Technical Publication #90-04 ## A THREE-DIMENSIONAL FINITE DIFFERENCE GROUND WATER FLOW MODEL OF HENDRY COUNTY by Keith R. Smith, P.G. October 1990 This publication was produced at an annual cost of \$1050.00 or \$2.10 per copy to inform the public. 500 1090 Produced on recycled paper. Hydrogeology Division Department of Research and Evaluation South Florida Water Management District West Palm Beach, Florida #### **EXECUTIVE SUMMARY** Hendry County, Florida is underlain by two fresh water aquifer systems: the Surficial Aquifer System and the Intermediate Aquifer System. The Surficial Aquifer System is comprised of the water table and lower Tamiami aquifers. The sandstone aquifer is the major producing zone within the Intermediate Aquifer System. Information from a ground water assessment completed by the South Florida Water Management District in 1988 was used to develop a regional three-dimensional ground water flow model. The Hendry County ground water flow model was developed using the U. S. Geological Survey modular three-dimensional finite-difference ground water flow model, commonly known as MODFLOW. This model was used because it allows a detailed evaluation of ground water flow, it is available in the public domain, it is compatible with most computer systems, and it contains many features which make it easy to use and modify. MODFLOW simulates ground water levels and flow using data describing the aquifers, such as hydraulic conductivity, transmissivity, leakance, and storage. Stress on the aquifers can also be simulated, such as recharge, evapotranspiration, well withdrawals, and interactions with surface water bodies. The Hendry County ground water flow model contains three layers representing the water table, lower Tamiami, and sandstone aquifers. Confining zones between aquifers are not represented by separate layers within the model. Rather, confining zones are represented by vertical flow terms within the top two layers of the model. The horizontal model grid is composed of 48 rows and 54 columns, with a uniform spacing of one mile. The model was calibrated by adjusting aquifer parameters to match computed water levels with observed water levels for the period January 1986 through December 1988. Ground water withdrawal information for the calibration period was obtained from individual water use permits for agricultural irrigation issued by the District. The permits supplied information on crop types, acreages, irrigation practices, and wells. This information was used to estimate actual monthly water use during the calibration period. Public supply water use, as reported to the District, was used in the model. Together, agricultural irrigation and public supply account for over 99 percent of the ground water use in Hendry County. To ensure the best possible accuracy for evaluative or predictive purposes, it is important to test the model's sensitivity to the estimated parameters. The top layer, representing the water table aquifer, is most sensitive to evapotranspiration and recharge rates. The lower layers, representing the lower Tamiami and sandstone aquifer, are somewhat sensitive to the vertical hydraulic conductivity of the confining zones. Upon completion of the sensitivity analyses, a predictive scenario was evaluated. This run represented all of the water use permitted or proposed as of November 1989, simulating moderately dry conditions (2-in-10 year drought). Results show that water levels within the water table aquifer decline one foot or more over approximately 50% of the modeled area. This regional head decline is a result of the decrease in recharge associated with the simulated drought. Several localized areas show larger head declines due to increased withdrawals. The lower Tamiami aquifer responds to drought in a similar manner. However, head declines due to withdrawals are larger because much more water is pumped from the lower Tamiami aquifer than the water table aquifer. A regional cone of depression centering on large scale agricultural production is seen in southeastern Hendry County, along with several other similar, but smaller scale impacts scattered through the modeled area. The sandstone aquifer shows the greatest impact with approximately 75% the simulated aquifer area showing water level declines of one foot or more during drought conditions. Areas showing greater impacts due to withdrawals are west of LaBelle and the area where Hendry, Lee, and Collier Counties meet. Because water level declines in the lower aquifers can result in an increase in the amount of leakage from overlying aquifers, the water level declines in the lower Tamiami and sandstone aquifers are causing significant water levels declines in the water table aquifer. #### Recommendations Strict management of the lower Tamiami aquifer in southeastern Hendry County and the sandstone aquifer throughout the study area is needed because of the projected declines in water levels. Minimum water levels should be established for the lower Tamiami aquifer in southeast Hendry County and the sandstone aquifer throughout the study area. All permitted withdrawals should be regulated to ensure the minimum levels are maintained. Increased monitoring of water levels and withdrawals is recommended for areas where minimum levels are set. Future requests for large scale withdrawals should be closely examined to ensure that the minimum levels can be maintained. The establishment of minimum water levels should be a part of the development of the water supply plan for this area. Accurate projections of future agricultural water use in Hendry County are essential to the planning process. These projections must include acreages, crop types, and locations likely to be developed, in order to simulate reasonable projections of future water conditions. The model developed in this study should be used in the evaluation of water use permit applications. Where a finer scale or site specific model is required, the regional model could be used to provide the boundary conditions. Areas where this is necessary include southeast Hendry County and Ft. Denaud (west of LaBelle). The model should continue to be refined and updated whenever additional information becomes available. Hydrogeologic studies should be undertaken in those areas where existing information is incomplete. These areas include Ft. Denaud in northwest Hendry County and the water table aquifer throughout the study area. This will increase the overall accuracy and confidence level of the model. Interfaces should be developed with the Lee County model, and the Collier County model currently under development. This will result in a truly regional model that will encompass the entire flow regime for the Surficial Aquifer System and the Intermediate Aquifer System in the lower west coast water supply planning area. The interface with the Lee County model is of particular importance, since the models indicate that much of the flow into the sandstone aquifer in Lee County consists of lateral flow originating in Hendry County. The large withdrawals for agricultural irrigation occurring near the county border may be affecting regional flow patterns in the area. Interactions between ground and surface water should be investigated. The dense network of small canals found in Hendry County should be examined and their effect on ground water flows quantified and used in the model. This would improve the calibration of the water table aquifer and the overall accuracy of the model. # TABLE OF CONTENTS | | <u>Page</u> | |---------------------------------------|---------------| | EXECUTIVE SUMMARY | | | LIST OF FIGURES | | | LIST OF TABLES | | | ACKNOWLEDGEMENTS | viii
ix | | ABSTRACT | | | 11100110101 1 | A | | INTRODUCTION | 1 | | Purpose and Scope | . 1 | | Location of Study Area | $\ddot{1}$ | | Previous Investigations | i | | Hydrogeology | $\frac{1}{4}$ | | Hydrogeology Surficial Aquifer System | $\frac{1}{1}$ | | Intermediate Aquifer System | 6 | | | - | | MODEL DESCRIPTION | . 10 | | Introduction | . 10 | | Discretization | . 12 | | Boundary Conditions | . 12 | | Hydraulic Characteristics | . 15 | | Transmissivity | . 15 | | Specific Yield | . 18 | | Storage | . 18 | | Vertical Conductance | . 18 | | Surface Water Interactions | . 18 | | Recharge | . 19 | | Evapotranspiration | . 21 | | Ground Water Use | . 21 | | Agricultural | . 23 | | Public Supply | ~ 23 | | Other Ground Water Uses | . 23 | | | | | CALIBRATION | . 28 | | Steady State Calibration | . 28 | | Translent Calibration | . 28 | | Layer 1 (Water Table Aquifer) | . 33 | | Layer 2 (Lower Tamiami Aquifer) | | | Layer 3 (Sandstone Aquifer) | | | Results | . 36 | | Transient Calibration | . 36 | | Layer I (Water Table Aquifer) | . 36 | | Layer 2 (Lower Tamiami Aquifer) | . 36 | | Layer 3 (Sandstone Aquifer) | . 36 | | Steady State Calibration | . 44 | | Layer I (Water Table Aquiter) | . 44 | | Layer 2 (Lower Tamiami Aquifer) | . 44 | | Layer 3 (Sandstone Aquifer) | . 44 | # TABLE OF CONTENTS (CONTINUED) | <u>Pa</u> | ige | |--|----------------------------| | Layer 1 (Water Table Aquifer) Layer 2 (Lower Tamiami Aquifer) | 55
60
60
60 | | Introduction Results Layer 1 (Water Table Aquifer) Layer 2 (Lower Tamiami Aquifer) | 61
61
61
61
66 | | RESULTS AND CONCLUSIONS | 69 | | RECOMMENDATIONS | 71 | | REFERENCES | 73 | | APPENDIX A: Aquifer Parameters | 75 | | APPENDIX B: River Package Input Data | 89 | | APPENDIX C: Maps of Monthly Rainfall | 90 | | APPENDIX D: Evapotranspiration Input Data 1 | .35 | | APPENDIX E: Water Use Data | 39 | | APPENDIX F: Comparative Hydrographs 1 | 97 | # LIST OF FIGURES | <u>Figure</u> | | <u>Page</u> | |---------------|---|-------------| | 1 | Location of Study Area | 2 | | 2 | Study Area | 3
 | 3 | Generalized Hydrogeologic Cross Section of Hendry County | 5 | | 4 | Areal Extent of Unconfined Occurrence of Lower Tamiami Aquifer | 7 | | 5 | Areal Extent of the Sandstone Aquifer | 8 | | 6 | Model Grid | . 13 | | 7 | Hydrogeologic Units and Corresponding Model Layers | . 14 | | 8 | Cell Types, Layers 1 and 2 | . 16 | | 9 | Cell Types, Layer 3 | . 17 | | 10 | Cells Containing River Reaches, Layer 1 | . 20 | | 11 | Cells Containing Discharging Wells, Layer 1 (Water Table Aquifer) | . 24 | | 12 | Cells Containing Discharging Wells, Layer 2 (Lower Tamiami Aquifer) | . 25 | | 13 | Cells Containing Discharging Wells, Layer 3 (Sandstone Aquifer) | 26 | | 14 | Observation Wells, Layer 1 (Water Table Aquifer) | 30 | | 15 | Observation Wells, Layer 2 (Lower Tamiami Aquifer) | 31 | | 16 | Observation Wells, Layer 3 (Sandstone Aquifer) | 32 | | 17 | Average Difference Between Observed and Simulated Water Levels, Layer 1 (Water Table Aquifer) | 34 | | 18 | Average Difference Between Observed and Simulated Water Levels, Layer 2 (Lower Tamiami Aquifer) | 35 | | 19 | Average Difference Between Observed and Simulated Water Levels, Layer 3 (Sandstone Aquifer) | 37 | | 20 | Simulated Water Levels, Layer 1 (Water Table Aquifer),
April 1988 | 38 | # LIST OF FIGURES (CONTINUED) | <u>Figure</u> | | Page | |---------------|---|------| | 21 | Simulated Water Levels, Layer 1 (Water Table Aquifer) October 1988 | 39 | | 22 | Simulated Water Levels, Layer 2 (Lower Tamiami Aquifer)
April 1988 | 40 | | 23 | Simulated Water Levels, Layer 2 (Lower Tamiami Aquifer) October 1988 | 41 | | 24 | Simulated Water Levels, Layer 3 (Sandstone Aquifer) April 1988 | 42 | | 25 | Simulated Water Levels, Layer 3 (Sandstone Aquifer) October 1988 | 43 | | 26 | Simulated Steady State Horizontal Flow Vectors, Layer 1 (Water Table Aquifer) | 45 | | 27 | Volumetric Budget, Layer 1 (Water Table Aquifer),
Steady State Conditions | 46 | | 28 | Simulated Steady State Horizontal Flow Vectors, Layer 2 (Lower Tamiami Aquifer) | 47 | | 29 | Simulated Steady State Vertical Flow Between Layer 1
(Water Table Aquifer) and Layer 2 (Lower Tamiami Aquifer) | 48 | | 30 | Volumetric Budget, Layer 2 (Lower Tamiami Aquifer),
Steady State Conditions | 49 | | 31 | Simulated Steady State Horizontal Flow Vectors, Layer 3 (Sandstone Aquifer) | 50 | | 32 | Simulated Steady State Vertical Flow Between Layer 2 (Lower Tamiami Aquifer) and Layer 3 (Sandstone Aquifer) | 51 | | 33 | Volumetric Budget, Layer 3 (Sandstone Aquifer), Steady State Conditions | 53 | | 34 | Volumetric Budget for Entire Model, Steady State Conditions | . 54 | | 35 | Steady State Water Levels, Layer 1 (Water Table Aquifer) | 62 | | 36 | Predicted Water Level Decline, Layer 1 (Water Table Aquifer), Steady State Conditions | 63 | # LIST OF FIGURES (CONTINUED) | <u>Figure</u> | Ĭ | Page | |---------------|---|------| | 37 | Steady State Water Levels, Layer 2 (Lower Tamiami Aquifer) | 64 | | 38 | Predicted Water Level Decline, Layer 2 (Lower Tamiami Aquifer), Steady State Conditions | 65 | | 39 | Steady State Water Levels, Layer 3 (Sandstone Aquifer) | 67 | | 40 | Predicted Water Level Decline, Layer 3 (Sandstone Aquifer), Steady State Conditions | 68 | # LIST OF TABLES | <u>Table</u> | | Page | |--------------|--|------| | 1 | MODFLOW Modules and Application to the Hendry County Model | 11 | | 2 | Evapotranspiration Extinction Depths | 22 | | 3 | Sensitivity Responses to Changes in Layer 1 | 56 | | 4 | Sensitivity Responses to Changes in Layer 2 | 57 | | 5 | Sensitivity Responses to Changes in Layer 3 | 58 | | 6 | Sensitivity Responses to Changes in Stress | 59 | #### ACKNOWLEDGEMENTS This study was carried out under the direction of Sharon Trost, formerly the Director of the Hydrogeology Division, and currently the Director of the Water Supply Planning Division. Scott Burns, Director of the Hydrogeology Division also provided direction and input on the hydrogeology of the lower west coast. The author wishes to acknowledge the peer review committee, whose comments greatly improved the quality of this report: Leslie Wedderburn, Ph.D., Research and Evaluation Department, SFWMD Bonnie Kranzer, Ph.D., Executive Office, SFWMD William Scott Burns, Hydrogeology Division, SFWMD Richard Bower, Water Supply Planning Division, SFWMD Steve Lamb, Water Use Division, SFWMD Phil Fairbank, Hydrogeology Division, SFWMD Gail Milleson, Murray-Milleson Inc., West Palm Beach Tom Missimer, Missimer and Associates, Cape Coral Dale Hardin, Agricultural Management Services, Punta Gorda Peter Anderson, GeoTrans Inc., Herndon, Virginia The author also wishes to acknowledge all others who reviewed this document: Karin Adams, Mary-Jo Shine, Jorge Restrepo, Walter Ward, Jose Alvarez, Lloyd Horvath, and Maurice Gebhardt. Richard Bower provided insight and assistance in understanding the subtleties of MODFLOW. He also developed many programs used to generate and manipulate the large data sets necessary in a model of this size. Finally, he provided insight into the hydrogeology of the Lee County - Hendry County border area. Karin Adams provided a great deal of assistance in running and making the necessary modifications to the many pre- and post- processing programs. Emily Hopkins assembled the rainfall, water level, and evaporation data used in the calibration process. Finally, the author wishes to acknowledge Cindy Whelan and Chris Benkley for their work on the graphics; and Karen Hargray and Hedy Marshall, who did the word processing and assisted in the editing of this report. #### ABSTRACT Hendry County, Florida, is underlain by two fresh water aguifer systems: the Surficial Aquifer System and the Intermediate Aquifer System. The Surficial Aquifer System is comprised of the water table and lower Tamiami aquifers. The sandstone aquifer is the major producing zone within the Intermediate Aquifer System. A three-dimensional ground water flow model of these aquifers was developed using the U.S. Geological Survey modular finite-difference ground water flow model (MODFLOW). The model consists of three layers representing the water table, lower Tamiami, and sandstone aguifers. Horizontal discretization was accomplished using a grid comprised of 48 rows and 54 columns, with a grid spacing of one mile. Initial aquifer parameters were obtained from a ground water resource assessment study of Hendry County (Smith and Adams, 1988). A transient calibration was performed for a three year period (1986 through 1988) by comparing simulated water levels with observed water levels in an extensive monitoring network. Sensitivity analyses showed that the lower Tamiami and sandstone aquifers are sensitive to changes in vertical hydraulic conductivity, and the water table aquifer is sensitive to changes in recharge and the maximum evapotranspiration rate. A predictive scenario was evaluated, representing all permitted and proposed water use as of November 1989, simulating a moderately dry period (2-in 10 year drought). Results of the simulation show that the water table aquifer experiences water level declines of one foot or more over 50% of the modeled area. The lower Tamiami aquifer is also showing significant effects of ground water withdrawals, as evidenced by the regional cone of depression that occurs in southeast Hendry County. The sandstone aquifer shows the greatest potential impact from permitted and proposed water withdrawals. The predictive scenario indicates that a decline in water levels of one foot or more will occur over approximately 75% of the areal extent of the sandstone aquifer in the study area, with localized head declines due to withdrawals exceeding 10 feet. Strict water management is recommended in the lower Tamiami aquifer in southeast Hendry County and in the sandstone aquifer throughout Hendry County. This should include the establishment of minimum water levels in the affected areas. Permitted withdrawals should be regulated in order to maintain these levels, which should be developed during the water supply planning process. #### INTRODUCTION #### PURPOSE AND SCOPE This study was undertaken as part of the South Florida Water Management District's program to develop comprehensive water supply plans. These plans will be based on quantitative assessments of the available water resources combined with estimates of future water use demands. Evaluation of existing water supply problem areas, identification of potential problem areas, and development of management guidelines will be integral parts of a water supply plan. The purpose of this study was to develop a county wide three-dimensional ground water flow model of the major fresh water aquifer systems in Hendry County. Specific applications of this model will enable the development and evaluation of various ground water elements to be included in the water supply plan for the Hendry County area and the subsequent evaluation of the impacts of proposed ground water uses. The model will also be used to evaluate short term drought management scenarios during declared water shortages. This report represents the third phase of a three phase ground water resource assessment for Hendry County. The first phase of the Hendry County ground water assessment was completed in 1986 and involved the evaluation of the ground water monitor network, identification of areas of data deficiency, and investigation of land and water use patterns. The results of this study are summarized in a technical memorandum (Smith, Sharp, and Shih, 1988). The second phase of the project included extensive field work to define the extent and occurrence of major aquifer systems, regional ground water flow patterns, water quality trends, and a preliminary
assessment of the future development potential of the ground water resources of Hendry County. The results of this work are described in SFWMD Technical Publication 88-12 (Smith and Adams, 1988). Development of the ground water flow model is the final phase of the resource assessment; however the model will be continually refined and updated as it is used in the regulatory and planning processes, and as more data becomes available. #### LOCATION OF STUDY AREA Hendry County is located in the central portion of south Florida, south of Lake Okeechobee (Figure 1). The study area includes all of Hendry County and a six mile buffer area into the adjacent counties of Charlotte, Lee, Collier, Broward, Palm Beach, and Glades. It lies generally within Townships 42 through 49 South, and Ranges 27 through 35 East, and encompasses approximately 2100 square miles, 1189 of which are in Hendry County (Figure 2). #### PREVIOUS INVESTIGATIONS Early investigations into the geology of south Florida were made by Matson and Clapp (1909), Matson and Sanford (1913), and Cooke and Mossom (1929). These studies were summarized by Parker and Cooke (1944), and Parker, Ferguson, Love and others (1955). More recent work on the geology of south Florida was done by Missimer (1984). The stratigraphy of the area was discussed by Puri and Vernon (1964), and Peck (1979). The stratigraphy and paleoecology along the Caloosahatchee River was investigated by DuBar (1958). The Tamiami Formation in Hendry County was Figure 1. LOCATION OF STUDY AREA investigated by Slater (1978). The lithostratigraphy of the Hawthorn Group was discussed by Scott (1988). The hydrogeology of the area was investigated by Klein, Schroeder, and Lichtler (1964) and Fish, Causaras, and O'Donnell (1983). The most recent work in Hendry County was done by Smith and Adams (1988). In addition, many site specific reports by various consultants are available. The reader is directed to the bibliography in Smith and Adams (1988) for a more complete list. Hydrogeologic studies in areas adjacent to Hendry County were done in Lee County by Wedderburn et al. (1982), and James M. Montgomery, Inc. (1988); and in Collier County by Knapp, Burns, and Sharp (1986). Three-dimensional ground water flow models have been developed for Lee County (Bower, Adams, and Restrepo, 1989) and Palm Beach County (Shine, Padgett, and Barfknecht, 1990). #### HYDROGEOLOGY A brief summary of the hydrogeology which supports the model development follows. Readers wishing a more detailed discussion of the hydrogeology of the Hendry County area are referred to Smith and Adams (1988). Hydrostratigraphic nomenclature used in this report is consistent with the 1988 publication, which follow the guidelines set forth by the Southeastern Geological Society Committee on Florida Hydrostratigraphy (SGSCFH,1986). Hendry County is underlain by three aquifer systems: the Surficial Aquifer System, the Intermediate Aquifer System, and the Floridan Aquifer System. The model developed for this study is limited to the Surficial Aquifer System and the upper portion of the Intermediate Aquifer System (Figure 3). The Floridan Aquifer System is not used for water supply in Hendry County because of its poor water quality; therefore, it is not discussed in this report. #### Surficial Aquifer System The Surficial Aquifer System consists of the water table aquifer and hydraulically connected units above the top of the first occurrence of laterally extensive and vertically persistent beds of much lower permeability (SGSCFH, 1986). In Hendry County, the Surficial Aquifer System is comprised of the water table aquifer and the lower Tamiami aquifer. Where they both occur, they are separated by leaky semi-confining beds which are collectively referred to as the Tamiami confining zone. Water Table Aquifer. The water table aquifer occurs throughout Hendry County. It is generally 20 to 40 feet thick, although in localized areas around LaBelle and Immokalee it occurs in thicknesses in excess of 80 feet. It is extremely variable in composition and hydraulic properties. Information on the hydraulic properties of the water table aquifer in Hendry County is extremely limited. Reported values of hydraulic conductivity range from approximately 100 feet per day (ft/day) to 3500 ft/day. Because of the large degree of lateral heterogeneity, susceptibility to drought induced stress, availability of other water sources, and potential impacts to wetlands, the water table aquifer is not heavily used in Hendry County. However, some localized use occurs in areas where there is no other viable water source available. Tamiami Confining Zone. The Tamiami confining zone is a leaky semi-confining zone that separates the water table aquifer from the underlying lower Tamiami aquifer. It is present throughout most of Hendry County and occurs in thicknesses up to 60 feet. However, in some areas of the western portion of the study area, it is very thin and is characterized by high values of vertical hydraulic conductivity. In these areas, it does not form an effective confining layer, and the Surficial Aquifer System behaves as a single unconfined aquifer. These areas generally correspond to the localized thick occurrences of the water table aquifer previously discussed. Lower Tamiami Aquifer. The lower Tamiami aquifer is the major source of ground water for most of Hendry County. It behaves as a semi-confined aquifer except in those areas where the Tamiami confining zone exhibits high values of vertical hydraulic conductivity, as previously discussed. Reported transmissivities in the lower Tamiami aquifer range from approximately 2800 ft²/day to 138,000 ft²/day. Generally, the aquifer is the most productive in southeast and east-central Hendry County, with productivity decreasing to the north, west, and south. In the areas where the lower Tamiami aquifer is unconfined, it also exhibits lower thickness and hydraulic conductivity values. The aquifer is not a major water source in these areas (Figure 4). #### Intermediate Aquifer System The Intermediate Aquifer System in southwest Florida consists of the upper Hawthorn confining zone, the sandstone aquifer, the mid-Hawthorn confining zone, the mid-Hawthorn aquifer, and the lower Hawthorn confining zone. Together, these units act to confine the underlying Floridan Aquifer System. Upper Hawthorn Confining Zone. The upper Hawthorn confining zone is a term used by Wedderburn et al. (1982) to describe a zone of low permeability in the uppermost part of the Hawthorn Group in Lee County. Smith and Adams (1988) extended this term into Hendry County to describe the zone of low permeability that forms the bottom of the Surficial Aquifer System and retards the vertical flow of water into the underlying aquifers of the Intermediate Aquifer System. The upper Hawthorn confining zone in the study area ranges in thickness from 10 feet near Immokalee to 260 feet southeast of LaBelle. Sandstone Aquifer. The sandstone aquifer occurs only in the western portion of the study area (Figure 5). It generally occurs as two distinct lithologic zones - an upper clastic zone and a lower carbonate zone (Smith and Adams, 1988). In many locations, the two lithologic zones exhibit good hydraulic connection and act as a single semi-confined aquifer. The sandstone aquifer varies in thickness in the study area between 160 feet in southeastern Lee County to zero throughout eastern Hendry County. It is the major source of ground water in western Hendry County due to the low yields of the water table and lower Tamiami aquifers in the area. Reported values of transmissivity in the sandstone aquifer range from approximately 160 ft²/day to 40,000 ft²/day. Smith and Adams (1988) reported the occurrence of an unnamed white limestone aquifer that occurs in Glades County northwest of LaBelle. Based on the limited information that exists, it is believed that this unit may be an extension of the sandstone aquifer; it is treated as such in this report. Mid-Hawthorn Confining Zone. The mid-Hawthorn confining zone underlies the sandstone aquifer. In those areas where the sandstone aquifer does not occur, the mid-Hawthorn and upper Hawthorn confining zones occur merge into one unit. The mid-Hawthorn confining zone is a relatively thick heterogeneous mixture of clayey dolosilts exhibiting very low values of hydraulic conductivity (Knapp et al., 1986). Mid-Hawthorn Aquifer. The mid-Hawthorn aquifer is not significantly developed in Hendry County. In those areas where it does occur, poor water quality and very low yields limit its use as a water source. Existing data indicate that no significant vertical flow occurs between the mid-Hawthorn aquifer and shallower units. As a result, the mid-Hawthorn aquifer is not included in the ground water flow model. #### MODEL DESCRIPTION #### INTRODUCTION The model used in this study is the U.S. Geological Survey modular three-dimensional finite-difference ground water flow model (McDonald and Harbaugh, 1988), commonly known as MODFLOW. This model was selected for the following reasons: - 1. It is available in the public domain, - 2. It is compatible with most computers with only minor modification, - 3. The modular structure of the code and its excellent documentation allow easy modification of the code and the addition of new modules for specialty applications, - 4. MODFLOW allows great flexibility of data file structure and management; this facilitates the employment of and interaction with other software for data manipulation, - 5. The cell-by-cell flow feature of the code can be used to: - A. Evaluate in detail, flow and head changes associated with various withdrawal scenarios, and - B. Generate boundary conditions for higher-resolution models within the regional flow model. The MODFLOW code contains modules which simulate recharge, evapotranspiration, rivers, drains, wells, and other sources and sinks of water external to the model.
Three iterative solution schemes are available for simulating flow problems: slice successive over relaxation (SSOR), strongly implicit procedure (SIP), and the preconditioned conjugate gradient (PCG) method (Kuiper, 1987). SSOR is the better solution method for some strongly layered conditions. However, it is not as direct as SIP, therefore it requires more time to arrive at a solution. PCG is frequently faster than SIP or SSOR for complex flow systems. Both SSOR and SIP were evaluated in the Hendry County model. SIP proved to be more efficient than SSOR in arriving at a solution, while SSOR was more stable than SIP during runs simulating drought conditions. Solutions generated by either method show no significant differences in head distribution. Table 1 summarizes the modules and their application to the Hendry County model. Three types of boundary conditions are available: specified head, specified flux, and head dependent flux. Specified head boundaries, also referred to as constant head, maintain the same user-specified head level throughout the simulation. Specified flux boundaries can be simulated through the use of external source terms in the model. No-flow boundaries are a type of specified flux boundary. Head dependent flux boundaries, as the name implies, generate a flux dependent on the head in the cell and a user specified head assigned to the external source. All types of boundary conditions can be set anywhere within a model grid. A no-flow boundary is implicit along the outer edges and bottom of a model grid. # TABLE 1 MODFLOW MODULES AND APPLICATION TO THE HENDRY COUNTY MODEL | MODFLOW MODULE | FUNCTION | USE IN MODEL | |-----------------------------|--|---| | Basic | Model Administration | Used | | Block
Centered
Flow | Computation of Aquifer Used Parameter Input Sets | | | Well | Simulates a source/sink to the model that is not affected by aquifer head | | | Drain | Simulates discharge from Not Used model dependant on aquifer head | | | River | Simulates effects of river
leakage. May recharge or
drain model depending on
head differences | Used to simulate surface water interactions | | ET | Simulates discharge through evapotranspiration | Used | | General
Head
Boundary | Simulates a source/sink at rates depending on head differences bwt. source/sink and aquifer | | | Recharge | Simulates recharge to model from infiltration of rainfall | | | SIP | Solves finite difference equations using the Strongly Implicit Procedure | Used | | SSOR | Solves finite difference equations using the Slice Successive Over Relaxation Method | | | PCG | Solves finite difference equations using the Preconceived Conjugate Gradient Method | | | Output Cntrl. | Specifies output format | Used | | Observation Nodes | Generates a file of computed heads for selected nodes | Used to generate convergence maps and hydrographs | #### DISCRETIZATION The study area was discretized into a horizontal grid comprised of cells measuring one square mile each, assembled into a grid of 48 rows and 54 columns (Figure 6). The origin of the model grid was set to correspond as closely as possible with the government survey grid, with each model cell representing approximately one section of land. However, variations in the survey grid made this difficult. MODFLOW offers two options for vertical discretization. In a fully three-dimensional model, the confining zones are represented in the model as individual layers. Values of transmissivity, storage, and vertical hydraulic conductivity for the confining zone are required for this approach. A fully three-dimensional model would more accurately simulate flow conditions where horizontal flow in the confining zone is an important part of the flow regime. In a quasi-three-dimensional model, the confining zones are not represented as individual layers, but as vertical conductance terms (Vcont) specified for the model layers representing aquifers. Within the study area, the values of hydraulic conductivity exhibited by the aquifers are several orders of magnitude greater than those in the confining zones. Therefore, it can be assumed that on the regional scale of the model, flow in the aquifers is primarily horizontal, and flow across the confining zones is primarily vertical, and the quasi-three-dimensional approach is a good approximation of the ground water flow regime in Hendry County. The Hendry County model contains three layers (Figure 7). Layer 1 represents the water table aquifer, layer 2 represents the lower Tamiami aquifer, and layer 3 represents the sandstone aquifer. While the sandstone aquifer occurs as two distinct lithologic zones, existing data indicates that it acts as a single, semi-confined aquifer. Therefore, it was represented as one layer in the model. The Tamiami confining zone is represented as vertical conductance terms in layer one, and the upper Hawthorn confining zone is represented as vertical conductance terms in layer two. The top of the mid-Hawthorn confining zone was simulated by the no-flow boundary implicit at the bottom of the model grid. This was based on lithologic and hydrogeologic data that indicate that no significant vertical flow takes place between the mid-Hawthorn confining zone and shallower units. #### **BOUNDARY CONDITIONS** MODFLOW allows the user to set several types of boundary conditions; no-flow, specified head and specified flux boundaries are commonly used types. No-flow boundaries are used where the ground water flow regime is such that flow across a boundary is not expected to occur. Specified head was chosen for the model boundaries in Hendry County where flow is expected to occur because: - 1. The specified head condition allows the model to compute fluxes for a variety of ground water flow configurations, whereas the specified flux condition requires the user to estimate fluxes for a single ground water flow condition, and - 2. The specified head condition is established only once for a model run in a file designated solely for that purpose, while the specified flux condition requires the user to set the fluxes for each stress period in a file used for other purposes. The specified head option greatly simplifies file management in a model of this size. | MODEL LAYER | Layer 1 | Represented by
Vertical Conductance
Terms between
layers 1 & 2 | Layer 2 | Represented by
Vertical Conductance
Terms between
layers 2 & 3 | Layer 3 | Not Represented
in Model | |--------------------|------------------------|---|--------------------------|---|----------------------|---| | HYDROGEOLOGIC UNIT | Water Table
Aquifer | Tamiami
Confining Zone | Lower Tamiami
Aquifer | Upper Hawthorn
Confining Zone | Sandstone
Aquifer | Mid-Hawthorn Not Repr
Confining Zone in Mo | | | | | | | | | | AQUIFER SYSTEM | Surficial | Aquifer | System | Intermediate | Aquirer
System | Fioura | A potential problem in the use of specified head boundaries is that the model may overestimate the flow into the model if steep ground water gradients (such as those around a pumping well) approach the boundary. Most of the large withdrawals are located such that the associated drawdowns do not reach the model boundaries, therefore any overestimation of flow into the model is assumed to be insignificant. This assumption was tested during sensitivity analysis of the model. In layers 1 and 2, representing the water table aquifer and the lower Tamiami aquifer, the boundaries consisted of specified head cells set six miles outside the county border except along Lake Okeechobee, where specified head cells were set along the rim canal (Figure 8). Six miles was chosen assuming that this distance was great enough to minimize any boundary effects in Hendry County. This assumption was tested during sensitivity analysis of the model. In layer 3, representing the sandstone aquifer, boundary conditions are set similar to layers 1 and 2, except for a no-flow boundary set at the easternmost extent of the sandstone aquifer (Figure 9). A no-flow boundary was chosen here because lithologic and hydrogeologic data indicate that the aquifer pinches out, and potentiometric surface maps (Smith and Adams, 1988) show that the principle flow in the sandstone aquifer occurs parallel to its eastern boundary. Therefore it is assumed that no significant flow occurs across the boundary. #### HYDRAULIC CHARACTERISTICS All data describing aquifer parameters, thicknesses, tops, bottoms, etc., are from Smith and Adams (1988), except when stated otherwise. This data is presented in Appendix A. ### Transmissivity Layer 1 (Water Table Aquifer). MODFLOW calculates the transmissivity of unconfined aquifers by multiplying the hydraulic conductivity by the saturated thickness of the aquifer. Initial saturated thickness is calculated from the starting head and aquifer bottom data, both of which are required input for an unconfined aquifer. Head changes throughout the simulation result in changes in the calculated transmissivity in an unconfined aquifer. When the simulated head in a cell drops to a level at or below the aquifer bottom elevation, the transmissivity of the cell becomes zero, resulting in the cell "going dry" and becoming inactive for the remainder of the simulation. This situation does not occur in the calibrated model or any of the runs simulating drought conditions. Little data exists on the hydraulic conductivity of the water table aquifer in Hendry County. However, existing data ranges between 100 ft/day and 3500 ft/day, with most values being less than 800 ft/day. The distribution of hydraulic conductivity was based on
lithologic and hydraulic descriptions of well cuttings from Smith and Adams (1988). Assigned values of hydraulic conductivity ranged from 100 ft/day for fine sand to 1000 ft/day for solutioned limestone. The bottom of layer 1 was based on data from Smith and Adams (1988). Layer 2 (Lower Tamiami Aquifer). The transmissivity grid for layer 2 (lower Tamiami aquifer) was developed by regionalization of the transmissivity values reported in Smith and Adams (1988). The regionalization was accomplished using a kriging interpolation technique, and resulted in a range of transmissivity from 9544 ft²/day to 113,600 ft²/day. Layer 3 (Sandstone Aquifer). The transmissivity grid for layer 3 (sandstone aquifer) was developed using the same procedure described for layer 2 (lower Tamiami aquifer). However, the grid resulting from the kriging algorithm did not accurately represent the sandstone aquifer in eastern Hendry County, where it does not occur (Figure 5). The grid was modified in these areas to more accurately simulate the easternmost extent of the aquifer. Resulting values of transmissivity representing the sandstone aquifer ranged from 390 ft²/day to 16,600 ft²/day. #### Specific Yield Data on specific yield of the water table aquifer in Hendry County is very limited. Therefore, specific yield for layer 1 (water table aquifer) was set at 0.2 (Fetter, 1980, Driscoll, 1986), which represents the average value for the type of sediments that comprise the water table aquifer. #### Storage The storage coefficient grids for layer 2 (lower Tamiami aquifer) and layer 3 (sandstone aquifer) were developed from the aquifer test data reported in Smith and Adams (1988). Resulting values for the storage coefficient in layer 2 (lower Tamiami aquifer) ranged from 0.0001 to 0.0006. Storage coefficient values for layer 3 (sandstone aquifer) ranged from 0.00008 to 0.0004. #### Vertical Conductance Tamiami Confining Zone. Vertical flow in the Tamiami confining zone is a function of the vertical conductance term (Vcont) entered in layer 1, and the head difference between layer 1 (water table aquifer) and layer 2 (lower Tamiami aquifer). Values of Vcont were obtained by dividing vertical hydraulic conductivities by the thickness of the confining zone. In those areas where the Surficial Aquifer System behaves as a single unconfined aquifer, the Tamiami confining zone is characterized by thin occurrences, high values of vertical hydraulic conductivity, or both. The resulting high values of Vcont cause layer 2 to react to stress in a similar manner as layer 1 in these areas. Reported values of vertical hydraulic conductivity of the Tamiami confining zone range from 0.01 ft/day to 1 ft/day. Reported thicknesses of the Tamiami confining zone range from 13 feet to 66 feet. The resulting values of Vcont range from 0.0000068 day-1 to 0.075 day-1. Upper Hawthorn Confining Zone. The Vcont grid representing the upper Hawthorn confining zone was developed in the same manner as the Vcont grid representing the Tamiami confining zone. Reported values of vertical hydraulic conductivity of the upper Hawthorn confining zone range from 0.000007 ft/day to 0.56 ft/day. Reported thicknesses of the upper Hawthorn confining zone range from 15 feet to 260 feet. Resulting values of Vcont range from 0.00000014 day-1 to 0.0053 day-1. #### SURFACE WATER INTERACTIONS The river module of MODFLOW was used to simulate the interaction of ground water and surface water in distinct water bodies. The simulated flow between ground water and surface water is controlled by the river bottom sediment hydraulic conductance, river stage, aquifer head, and elevation of the river bottom. Flow can occur both into and out of the river, depending on the direction of the gradient between river stage and aquifer head. When the aquifer head is higher than the river stage, flow is from the aquifer into the river, and conversely, when the river stage is higher than the aquifer head, flow is from the river into the aquifer. The rate of flow into or out of the river is determined by the difference between river stage and aquifer head, and is proportional to the conductance of the river bed. If the aguifer head falls below the bottom of the river, flow into the aquifer occurs at a rate equal to the difference between the river stage and river bottom elevation, and is proportional to the conductance of the river bed. Further reductions in aquifer head produce no increase in flow into the aquifer. River bed conductance for a cell is obtained by multiplying the hydraulic conductivity of the river bottom sediments by the wetted perimeter and the length of the river reach that occurs in the cell, and dividing by the thickness of the river bed sediments. MODFLOW assumes that the hydraulic conductivity of the river bottom and river channel sides is the same. In south Florida. this assumption may not be valid due to accumulation of fine sediments on the bottom of the channel which can significantly reduce flow. In this case, seepage through the sides of the channel may account for the majority of flow. This situation can be approximated by assigning different values of hydraulic conductivity to the bottom and sides of the river channel when calculating the river bed conductance term. The values of riverbed hydraulic conductivity used in the model ranged between 0.001 ft/day and 0.1 ft/day. Only those surface water bodies with reliable information on widths, depths, and stages were simulated in the Hendry County model. They included the Caloosahatchee River (C-43), C-19, the rim canal surrounding Lake Okeechobee, the Miami Canal (L-23, 24, and 25), L-1, L-2, L-3, L-4, L-28 interceptor canal, north feeder canal, west feeder canal, the Townsend Canal, and Lake Trafford. Bottom elevations, profiles, and configuration of most canals were obtained from District records and aerial photographs. Bottom elevations for the Caloosahatchee River were obtained from U. S. Army Corps of Engineers soundings. District stage data were used to calculate average wetted perimeters. Cells containing river reaches are shown in Figure 10. Model input data for the river module is presented in Appendix B. #### RECHARGE Recharge resulting from precipitation was calculated using a method discussed in Bower et al. (1990). Recharge is calculated as a function of interception, depression storage loss, and surface drainage. In determining recharge from precipitation in Hendry County, it was assumed that there was only one precipitation event per rainy day. Interception and depression storage are satisfied early in an event, so large portions of many small events are intercepted or stored in small depressions (Linsley et al., 1982). Interception is the amount of precipitation which wets and adheres to above ground objects until it returned to the atmosphere through evaporation (Viessman, et al., 1977). The amount of precipitation intercepted is a function of the storm character, season, and species, age, and density of the vegetation. Since Hendry County is predominantly agricultural, it was assumed that variations in these factors would be negligible in a regional model. Therefore, a uniform factor of 0.8 for interception (80% not intercepted) was used throughout the model. The precipitation that reaches the ground may infiltrate, flow over the surface, or become trapped in small depressions from which the only escape is evaporation or infiltration. The maximum depression storage loss for impervious surfaces on a 1% slope is 0.11 inches. Since almost all of the modeled area exhibits slopes of less than 1%, the storage loss figure of 0.11 inches is assumed to be a valid maximum for the entire modeled area. For permeable soil conditions (such as those found throughout Hendry County), infiltration normally occurs at a much faster rate than evaporation. Therefore, it was assumed that all of the water stored in depressions would infiltrate. To accomplish this, the value of instantaneous hydraulic conductivity was set to 10 ft/day, and the vertical hydraulic conductivity of the soil zone was set to 0.01 of the horizontal hydraulic conductivity of the water table aquifer. This resulted in an almost instantaneous infiltration of a depression storage of 0.11 inches. Readers desiring a more detailed discussion of the method used to calculate recharge are directed to Bower et al. (1990). Surface drainage for south Florida conditions can be estimated as a function of the net precipitation and a coefficient relating the potential for runoff to surface drainage. Since Hendry County is extremely flat, it is assumed that these losses will be minor, and the coefficient was set to 0.01. Use of this method resulted in a nearly uniform ratio of recharge to precipitation of 0.79. Monthly rainfall data was obtained from 45 rainfall stations located in and around the study area. The data was regionalized using a kriging interpolation technique, which produced a rainfall value for each cell. These values were multiplied by 0.79 to obtain a recharge value for each cell. Maps of the monthly rainfall distribution and locations of rainfall stations are presented in Appendix C. #### **EVAPOTRANSPIRATION** MODFLOW simulates evapotranspiration as a linear function, with the maximum rate occurring at a specified surface, decreasing to zero at a user specified extinction depth. The maximum evapotranspiration rate was set to the recorded monthly pan evaporation rate at stations located in Clewiston, Lehigh Acres, and Hurricane Gate 1, which is located at the outlet of Lake Okeechobee to the Caloosahatchee River. Since evaporation data is available from only three stations located in the northern portion of the modeled area and the evaporation rates at each station were similar, data from the three stations were averaged, and a uniform rate was applied throughout the model. The maximum evapotranspiration rate was set to occur at land surface. Extinction depths were
established for each cell based on the land uses occurring within the cell. Land use types and corresponding extinction depths used in the model are listed in Table 2. The area of each land use occurring in a cell was totalled, and a weighted average was used to determine the extinction depth for each cell. Model input data for the evapotranspiration module is presented in Appendix D. #### **GROUND WATER USE** Water use figures for the model were determined using data from individual water use permits issued by the District. Individual water use permits are required if the average daily water use equals or exceeds 100,000 gallons per day (gpd). An individual water use permit is also required of smaller uses (average daily use exceeding 10,000 gpd) in Reduced Threshold Areas (RTA). The southwest corner of Glades County, the northwest corner of Hendry County, and all of Lee County are designated RTA's. The District also issues general water use permits to all uses less TABLE 2 EVAPOTRANSPIRATION EXTINCTION DEPTHS (Modified from Florida Irrigation Guide (SCS 1982) | CROP TYPE | EXTINCTION DEPTH (Feet Below Land surface) | |------------------|--| | Small vegetables | 0.5 - 2 | | Urban Landscape | 2-6 | | Sugar Cane | 3 | | Pine wetlands | 1-3 | | Cypress wetlands | 1-8 | | Pasture | 2-6 | | Citrus | 3-5 | | Forested uplands | 1.5-3 | than 100,000 gallons per day, with the exception of single family homes, duplexes, and water used strictly for fire-fighting (SFWMD, 1985). General water use permits were not included in the determination of water use for the model because the total amount covered in general permits is insignificant when compared to individual permits. However, all legal uses of water, no matter how small, are important from a management standpoint because they are protected by the District's water use rules from adverse impacts caused by other water users. Therefore, impacts to the smaller users can effect larger users, requiring reduced withdrawals or mitigation of the adverse impacts. This can be of critical importance during the management of competing uses. #### Agricultural Agricultural water use accounts for over 99% of the permitted ground water use in Hendry County (Smith and Adams, 1988). Records of water withdrawn generally do not exist for agricultural uses. Therefore, agricultural water use was estimated. The irrigation water requirements of different crops was estimated using a method described by the U. S. Soil Conservation Service (USDA, 1970). This method uses the modified Blaney-Criddle formula to estimate the water requirements of various crops. Factors such as crop type, soil type, air temperature, daylight hours, effective rainfall, and irrigation system efficiency are used to calculate the irrigation requirements of different crops found throughout the modeled area. Data on all agricultural water uses with individual water use permits was assembled into a spreadsheet. This information included crop types, acreage, irrigation system data, well information, and soil types. Precipitation data from the LaBelle station was used to determine effective rainfall. The irrigation requirements for each permitted use were estimated for each month of the calibration period (January 1986 through December 1988). The monthly irrigation requirement for each permitted use was distributed among the permitted withdrawal facilities in proportion to their pump capacities. Individual wells were assigned to the proper model cell and then all the well withdrawals within a cell were summed to give a single withdrawal rate for that cell for a given month. Agricultural water use data is presented in Appendix E. Figures 11, 12, and 13 show the distribution of cells with well withdrawals simulated for layer 1 (water table aquifer), layer 2 (lower Tamiami aquifer), and layer 3 (sandstone aquifer), respectively. ## **Public Supply** There are five users of ground water for public supply in the study area with individual water use permits: LaBelle, Immokalee, Port LaBelle, Hendry County Department of Corrections, and a campground/trailer park. Withdrawal records are available for all of these except the Department of Corrections; their public supply use is combined with a much larger agricultural use. Public supply withdrawals were assigned to the proper cell and added to the agricultural withdrawal data file. Information on public supply ground water use is presented in Appendix E. #### Other Ground Water Uses Most of the other uses of ground water in Hendry County can be assigned to one of three types: rural self-supplied, industrial, and mining-dewatering. The mining-dewatering uses are short-term uses which require on-site impoundments to store withdrawn water. The only consumptive use in these operations is water lost to evaporation, which is insignificant for a regional model with a coarse grid. Therefore, mining-dewatering uses were not simulated in the model. Rural self-supplied water use in Hendry County was estimated at 1.9 million gallons per day (mgd) by Leach (1980). Leach (1984) also projected rural self-supplied water use at 3.39 mgd in the year 2000. This amount is approximately 0.01% of the permitted ground water use in Hendry County, and is considered insignificant for purposes of this study. Therefore, rural self-supplied water use was not simulated in the model. There are several industrial uses of ground water in Hendry County, mainly small citrus processing plants and air conditioning uses. Permitted industrial ground water use in Hendry County total 8.6 million gallons per month, or 0.03% of all ground water use (Smith and Adams, 1988). Industrial water use is also widely distributed throughout the modeled area. Therefore, industrial water use was not simulated in the model. ### CALIBRATION The Hendry County model was calibrated to both steady state and transient conditions. Locations of the observation wells used in the calibration process are shown in Figures 14, 15, and 16. The calibration period was January 1986 through December 1988. This period was chosen because it is the most recent period represented by ample water level observations. An in-depth analysis and discussion of the water level data from the monitor network can be found in Smith and Adams (1988). A multi-year period was chosen so that the effect of annual variations in canal stage, evapotranspiration, irrigation, and seasonal rainfall could be seen. ### STEADY STATE CALIBRATION The steady state calibration was done in two parts. Initial steady state runs served to make the first adjustments to the aquifer parameters used in the model. Average values of recharge, evapotranspiration, pumpage, and surface water stage elevations were used. These average values were calculated from the monthly values within the calibration period. Head distributions resulting from these runs were compared to water levels in observation wells averaged over the calibration period. The adjusted aquifer parameter data sets were then used in the transient calibration runs, where they were refined further. Finally, the steady state model was re-run using the data sets from the transient calibration to obtain a final steady state run. This final steady state run provided much of the information used to describe the ground water flow regimes in Hendry County, and to act as the base case for most of the sensitivity analyses and predictive scenarios. ### TRANSIENT CALIBRATION The transient runs comprised 36 stress periods of one month each. Each stress period contained one time step. The model was also run using five time steps per stress period to determine if the number of time steps in a stress period affected the solution. The maximum head difference was 0.01 feet, and differences in the volumetric budget were insignificant. Therefore, to maximize computer utilization, the model was run using one time step per stress period. Starting heads in each layer were calculated from water level data obtained from USGS monitor wells in December 1985, which is representative of a moderately stressed condition. The data was regionalized using a kriging interpolation technique, which provided a head for every cell. It was attempted to calibrate so that agreement between observed water levels in monitor wells and simulated water levels in the cells which represent the location of those wells, averaged over the calibration period, were generally within the following ranges: | Layer 1 (water table aquifer) | +/- 2 feet | |---------------------------------|------------| | Layer 2 (lower Tamiami aquifer) | +/- 3 feet | | Layer 3 (sandstone aquifer) | +/- 4 feet | This is the same procedure used to calibrate the Lee County model (Bower et al., 1990). The procedure was assumed to be valid for the Hendry County model because the hydrogeology of the two counties is similar, and they are within the same regional flow system. Tolerance is increased with depth for the following reasons: - 1. In the water table aquifer, small changes in water levels reflect potentially large impacts, particularly to wetlands, and - 2. The aquifer parameters typical of the deeper semi-confined aquifers in the area cause the heads within these aquifers to fluctuate more in response to stress when compared to unconfined aquifers. Comparative hydrographs for observed and simulated water levels were generated for those cells that correspond to the locations of USGS monitor wells. These were used to aid in interpretation of the numerous model runs, particularly how the simulated water levels changed over time in response to varying stresses. These hydrographs are presented in Appendix F. Agreement of simulated water levels with observed water levels can be affected by the following conditions: - 1. MODFLOW simulates well withdrawals from a cell as a single stress located at the node, or center of the cell. In reality, the area represented by a cell may
contain many pumping wells. This situation is common throughout the Hendry County model, due to the size of the cells. Combining all the well withdrawals located within a cell and locating the total withdrawal at the center of the cell is not a completely accurate simulation. In addition, the computed head in a cell represents the average of all heads within the cell. In reality, the head will vary throughout the area represented by a cell in response to the actual stresses. In areas of higher ground water gradients, such as those caused by intensive well withdrawals, water levels throughout a cell can vary significantly from the average. If a cell contains both a monitor well and intensive well withdrawals, or a monitor well is located in a cell adjacent to a cell or cells containing intensive well withdrawals, or if a monitor well is not located near the center of the corresponding cell, the agreement of simulated water levels with observed levels can be significantly affected. This situation is referred to as cell-wide averaging, and occurs at several locations in the Hendry County model. - 2. The model was run using one month stress periods, and the simulated heads represent end of the month levels. Observed water levels were taken on various days throughout a given month. The discrepancy caused by this situation can be minimized by averaging the difference between observed and simulated heads over the calibration period when comparing the results. - 3. Most of the rainfall in the study area occurs as intense short term events over relatively small areas. Ground water levels respond almost immediately to these events. Most of the observation wells are located a significant distance from a rainfall station, so an intense rainfall event causing water level fluctuations at a given well may not be represented in the rainfall data. In addition, the short duration of these storms is masked by using monthly stress periods. The discrepancy caused by these phenomena can also be minimized by averaging the difference between observed and simulated heads over the calibration period when comparing the results. - 4. Inspection of aerial photographs reveals that Hendry County has a dense network of canals, ranging in width from several feet to 400 feet. Only those canals with reliable data on depths, profiles, configurations, and stage, were included in the model. Errors can occur if an observation well is located near a canal that is not represented in the model, and water levels in the canal are maintained at a higher or lower levels than the adjacent ground water levels. It is not clear how this situation affects the overall calibration of the model. An in depth study to determine the effects of this situation is beyond the scope of this project. Investigation and analysis of ground water - surface water interactions in Hendry County is recommended. Initially, the model was run with the input data sets as discussed in the Model Description section of this report. Modifications to these data sets necessary to achieve calibration are discussed in the following sections. ## Layer 1 (Water Table Aquifer) No changes were made to the hydraulic conductivity or specific yield values during the calibration process. Vertical conductance (Vcont) between layer 1 and layer 2 was varied in order to change the head distributions in both layers. The final distribution of Vcont ranged from 0.0006 day-1 to 0.059 day-1, which falls within the range of values obtained from aquifer test data. Final values of Vcont were multiplied by the thickness of the confining zone to ensure that the corresponding values of vertical hydraulic conductivity remained reasonable. The final Vcont array used in the calibration of the model is presented in Appendix A. Figure 17 illustrates the agreement between simulated heads in layer 1 and observed water levels in observation wells in the water table aquifer. Of the 36 observation wells in this layer, 19 did not fall within the specified tolerance range (+/- 2 feet). Of these, nine were only slightly outside the range (errors less than 10 per cent of the total range of tolerance), which was considered to be an insignificant error. Of the remaining ten wells that did not fall within the tolerance range, five wells are influenced by surface water bodies (HE-339, HE-857, HE-858, HE-862, and C-1071), three wells are influenced by intense well withdrawals (C-462, C-532, and C-1078), and one well is influenced by its proximity to specified head cells on two sides (C-986). The remaining well that did not fall within the specified tolerance range (HE-856) has an average difference between observed and simulated water levels of 3.1 feet. # Layer 2 (Lower Tamiami Aquifer) No changes were made to the transmissivity or storage values during the calibration process. The vertical conductance between layer 2 and layer 3 was altered to change the head distribution in both layers. Changes were made in the same way as they were when the Vcont values between layers 1 and 2 were changed. Final values of Vcont ranged from 0.0000044 day-1 to 0.0016 day-1, which are within the range of reported values obtained from aquifer tests. The final Vcont array used in the calibration of the model is presented in Appendix A. Agreement between simulated heads in layer 2 and observed water levels in monitor wells in the lower Tamiami aquifer are shown in Figure 18. Of the 14 observation wells in this aquifer, two wells did not fall within the specified tolerance range (+/- 3 feet). Well HE-1075 is located in the Everglades Agricultural Area, and is influenced by canals not simulated in the model. Well HE-861 is surrounded by fields that, based on inspection of aerial photographs, appear to have a surface water management system. These fields probably undergo both flood irrigation from surface water sources, and drainage. It is possible that the water management practices around both of these wells effect the ground water levels, which in turn may influence the rate at which leakage through the Tamiami confining zone takes place. Since surface water management systems were not simulated in the model, this may be a potential source of error. ## Layer 3 (Sandstone Aquifer) No changes were made to the transmissivity or storage values during the calibration process. Changes in the head distribution in this layer during calibration were caused by altering the Vcont array between layers 2 and 3. Agreement between simulated heads in layer 3 and observed water levels in observation wells in the sandstone aquifer are shown in Figure 19. Of the 20 observation wells in this aquifer, two wells did not fall into the specified tolerance range (+/- 4 feet). Well L-2186 has only nine observed water levels randomly scattered throughout the calibration period; therefore, the observed data was determined to be unreliable. Well L-731 exhibits an extremely wide range of water level fluctuation (approaching 29 feet), and its water levels are significantly lower than several nearby wells. In addition, it is located in an area of intense withdrawals, therefore it was assumed that this well is subject to cell-wide averaging. ### RESULTS ### Transient Calibration Layer 1 (Water Table Aquifer). Figures 20 and 21 show the simulated head distributions in April 1988 (end of wet season) and October 1988 (end of dry season) in layer 1 (water table aquifer). Generally, the highest water levels occur north of Immokalee, and water flows radially away from this area. The lowest levels occur along the Caloosahatchee River where the ground water discharges into the river, and in the Everglades Agricultural Area in eastern Hendry County. It can seen that there is little seasonal head fluctuation. Most of this seasonal fluctuation takes place near concentrated withdrawals. The simulated head distributions are consistent with the water levels found in Smith and Adams (1988). Layer 2 (Lower Tamiami Aquifer). Figures 22 and 23 show simulated head distributions in layer 2 (lower Tamiami aquifer) in April and October 1988. Comparison to figures 20 and 21 show the general head distributions, and therefore the regional flow patterns, to be similar to the water table aquifer. However, heads in the lower Tamiami aquifer are slightly lower than those in the water table aquifer, and seasonal fluctuations are more apparent. Larger, more intensive water uses are seen as large cones of depression on these maps. A regional cone of depression caused by concentrated withdrawals for agricultural irrigation occurs in southeastern Hendry County. Layer 3 (Sandstone Aquifer). Figures 24 and 25 show the head distributions in the sandstone aquifer in April and October 1988. Due to its low values of hydraulic conductivity and thin occurrence, the effect of pumpage from the sandstone aquifer produces deep cones of depression of limited areal extent. Seasonal fluctuations are also more apparent, particularly near the withdrawals. SIMULATED WATER LEVELS, LAYER 2 (LOWER TAMIAMI AQUIFER), APRIL 1988 Figure 22. SIMULATED WATER LEVELS, LAYER 2 (LOWER TAMIAMI AQUIFER), OCTOBER 1988 Figure 23. SIMULATED WATER LEVELS, LAYER 3 (SANDSTONE AQUIFER), OCTOBER 1988 Figure 25. ### **Steady State** As previously stated, a final steady state run was completed using the aquifer parameter data used in the final transient calibration. Recharge, well withdrawals, evapotranspiration, and surface water stage levels were averaged over the three year calibration period. Data from this steady state run was used to provide information to describe the ground water flow regimes in Hendry County and to act as the base case for most of the sensitivity analyses and predictive scenarios. Layer I (Water Table Aquifer). Figure 26 shows the direction and magnitude of simulated horizontal flow in the water table aquifer. Each arrow represents the flow from an individual cell. The majority of the larger flow vectors are associated with
intensive ground water use or interactions with surface water bodies. An analysis of the volumetric budget for layer 1 (water table aquifer) is shown in Figure 27. The majority of flow into this layer (96.2%) is derived from recharge (rainfall), 3.7% is upward leakage from layer 2, and 0.1% is from the specified head cells. Of the total flow out of layer 1, 87.1% is evapotranspiration, 7.0% is leakage to layer 2 (lower Tamiami aquifer), 1.5% is well pumpage, 0.7% is river leakage, and the remaining 3.7% is flow the specified head cells, representing flow out of the modeled area, mainly to Lee and Collier Counties. Layer 2 (Lower Tamiami Aquifer). Figure 28 shows the magnitude and direction of simulated horizontal flow in layer 2. The regional cone of depression in southeastern Hendry County is quite apparent as it influences regional flow patterns at distances up to 11 miles. This area can also be seen in Figure 29, which is a representation of the simulated vertical flow between the lower Tamiami aquifer from the overlying water table aquifer. The cone of depression in the lower Tamiami aquifer caused by the heavy pumpage in southeastern Hendry County induces a greater amount of leakage into the aquifer. Areas of high leakage in the western portion of the study area are also a result of withdrawals from the lower Tamiami aquifer, or are caused by withdrawals from the underlying sandstone aquifer. Figure 30 illustrates the volumetric budget for layer 2 (lower Tamiami aquifer). Approximately 68.2% of the total inflow to this layer is recharge from the water table aquifer, 31.5% is from the specified head cells, and 0.3% is from upward leakage from the sandstone aquifer. The flow from the specified head cells represents flow into the modeled area from Glades County, and from Collier County south of Immokalee. Of the total outflows, 35.8% is upward leakage to the water table aquifer, 31.8% is to wells, 19.8% is downward leakage to the sandstone aquifer, and 12.6% to is the specified head cells. The upward leakage occurs mainly in the areas of western Hendry County where the Tamiami confining zone exhibits high values of vertical hydraulic conductivity. In these areas, the two models layers tend to act as if simulating a single, unconfined aquifer. Therefore, water is exchanged freely between the two layers. Flow to the specified head cells represents horizontal flow out of the modeled area, mainly to Lee and Collier counties. Layer 3 (Sandstone Aquifer) Figure 31 shows the magnitude and direction of simulated horizontal flow in the sandstone aquifer. It can be seen that the effect of large withdrawals generally extend over a distance of two to three miles, as opposed to the eleven mile distance seen in the lower Tamiami aquifer. Figure 32 illustrates the simulated leakage into the sandstone aquifer from the overlying aquifers. It is clear that most of the large values of leakage correspond to areas of heavy VOLUMETRIC BUDGET, LAYER 1 (WATER TABLE AQUIFER), STEADY STATE CONDITIONS Figure 27. VOLUMETRIC BUDGET, LAYER 2 (LOWER TAMIAMI AQUIFER), STEADY STATE CONDITIONS withdrawal from the sandstone aquifer. However, recharge to the sandstone aquifer from overlying layers occur throughout its extent. The volumetric budget for layer 3 (sandstone aquifer) is illustrated in Figure 33. Almost all of the inflow to the sandstone aquifer (98.0%) is recharge from above. The remaining 2.0% comes from the specified head cells. Of the total outflow, 79.1% is to wells, 19.7% is to specified head cells, and 1.2% is upward leakage to the lower Tamiami aquifer. The outflow to the specified head cells represents horizontal flow out of the modeled area, mainly to Lee and Collier counties. Figure 34 is a combined volumetric budget for all of the modeled area. Total inflow consists of 96.6% recharge (rainfall), and 3.4% flow from specified head boundaries (flow from outside the modeled area). Total outflow consists of 87.5% evapotranspiration, 6.4% to wells, 5.4% to specified head boundaries (flow out of the modeled area), and 0.7% discharge to surface water bodies. ure 33. VOLUMETRIC BUDGET, LAYER 3 (SANDSTONE AQUIFER), STEADY STATE CONDITIONS Figure 34. VOLUMETRIC BUDGET FOR ENTIRE MODEL, STEADY STATE CONDITIONS ### SENSITIVITY TESTING The model was tested to check its sensitivity to changes in the boundary conditions, aquifer parameters, and stresses. Boundary conditions were tested two ways: by moving the boundaries farther away from the center of the model, and by substituting specified flux boundaries for the specified head boundaries. The specified head cells were moved out from the center of the model a distance of approximately four miles by expanding the grid spacing of rows 1, 2, 3, 46, 48, and 48; and columns 1, 2, 3, 52, 53, and 54. The model was run using steady state conditions and this grid configuration, and the resulting heads at the Hendry County boundary were compared to the steady state calibration run. No significant differences in heads were found. Specified flux boundaries were simulated using the following procedure. First, all specified head cells were converted to active cells. Then, the flow was calculated between each of these cells and the cell immediately adjacent towards the center of the model, using the starting heads (December 1985) and the calibrated aquifer parameters. These fluxes were assigned to the proper cells and added to the well file. The model was run for steady state conditions, and both heads and volumetric budgets were compared. No significant difference in heads in Hendry County were found. Significant head differences resulting from the two types of boundary conditions are limited to a range of two cells from the location of the specified head boundary. Analysis of the volumetric budget showed that some overestimation of flow into the model resulted from the use of specified head boundaries, however the overall effects on the model are minimal. In the types of uses planned for this model, the specified head boundaries are not expected to be a problem. However, in those cases where it appears that a specified flux boundary will give a more conservative solution, it is recommended that specified flux boundaries be substituted. Aquifer parameters were tested by altering the following parameters: Layer 1 conductivity and river bed conductance, Vcont between layers 1 and 2, layer 2 transmissivity, Vcont between layers 2 and 3, and layer 3 transmissivity. The sensitivity of the model to these parameters was tested by doubling, then halving each parameter, one at a time. It was assumed that testing this range of values would bracket the range of uncertainty for each parameter. This may not be true for the Vcont data, but changes in the Vcont values greater than the stated range resulted in the model becoming unstable. Head changes in each layer were examined to determine the relative sensitivity. The results of these tests are presented in Tables 3, 4, and 5. The model was tested for its sensitivity to the following stresses: recharge, maximum evapotranspiration rate, and evapotranspiration extinction depth. Recharge and ET rates were increased and decreased by 10%, and the ET extinction depth was raised and lowered by one foot. It was assumed that testing this range of values for the various stresses would bracket the range of uncertainty. Results of these sensitivity tests are presented in Table 6. The strongly implicit procedure (SIP) was the solution method used in the calibration process. Overall, it resulted in a stable solution in an average of 14 iterations. However, when severe drought scenarios were tested, the model became unstable and would not converge. Therefore, the slice-successive over relaxation (SSOR) method was tested. Using the calibrated data, SSOR would reach a solution in 31 iterations. The maximum head difference between solutions generated by the two methods was 0.01 feet, which was considered insignificant. SSOR provided a stable solution for the drought scenarios. TABLE 3 SENSITIVITY RESPONSES TO CHANGES IN LAYER 1 (Head Changes in Feet) | · | MAXIMUM
HEAD
INCREASE | MINIMUM
HEAD
INCREASE | AVERAGE
HEAD
CHANGE | STD.
DEV. | |---|-----------------------------|-----------------------------|---------------------------|--------------| | Change in Layer 1
Conductivity Doubled
Conductivity Halved | .99
1.22 | -1.58
91 | 08
06 | .26
.18 | | Vcont Doubled | .65 | 66 | .005 | .10 | | Vcont Halved | .66 | 84 | .007 | .12 | | Riv. Cond. Doubled | .33 | 19 | 0007 | .04 | | Riv. Cond. Halved | .01 | 69 | 01 | .05 | | Change in Underlying Layer 2
Conductivity Doubled
Conductivity Halved | .98
1.12 | -1.47
45 | 05
.04 | .19
.12 | | Vcont Doubled | 1.92 | 73 | .16 | .30 | | Vcont Haived | -2.63 | 59 | 29 | .49 | | Riv. Cond. Doubled | .23 | 10 | 001 | .03 | | Riv. Cond Halved | .01 | 69 | 01 | :04 | | Change in Underlying Layer 3 Conductivity Doubled Conductivity Halved | .20 | 48 | 02 | .07 | | | .38 | 09 | .01 | .04 | | Vcont Doubled | 1.12 | 49 | .05 | .15 | | Vcont Halved | .32 | 1.74 | 10 | .26 | | Riv. Cond. Doubled | .08 | 06 | 002 | .009 | | Riv. Cond. Halved | .03 | 07 | .001 | .006 | TABLE 4 SENSITIVITY RESPONSES TO CHANGES IN LAYER 2 (Head Changes in Feet) | | MAXIMUM
HEAD
INCREASE | MINIMUM
HEAD
INCREASE | AVERAGE
HEAD
CHANGE | STD.
DEV. | |---|-----------------------------|-----------------------------|---------------------------|--------------| | Change in Layer 2 Transmissivity Doubled Transmissivity Halved | 3.74 | -1.13 | .14 | .70 | | | 1.49 | -5.40 | 06 | .51 | | Vcont Doubled | .12 | 40 | .005 | .03 | | Vcont Halved | .50 | 18 | .006 | .03 | | Change in Overlying Layer 1 Transmissivity Doubled Transmissivity Halved | 3.31 | 88 | .16 | .57 |
| | 1.46 | -2.44 | 07 | .34 | | Vcont Doubled | .06 | 12 | 004 | .02 | | Vcont Halved | .16 | 07 | .004 | .02 | | Change in Underlying Layer 3 Transmissivity Doubled Transmissivity Halved | 1.09 | 50 | .06 | .23 | | | .39 | -1.11 | .03 | .14 | | Vcont Doubled | 6.83 | 48 | .50 | 1.12 | | Vcont Halved | 4.82 | -9.30 | 73 | 1.52 | # TABLE 5 SENSITIVITY RESPONSES TO CHANGES IN LAYER 3 (Head Changes in Feet) | | MAXIMUM
HEAD
INCREASE | MINIMUM
HEAD
INCREASE | AVERAGE
HEAD
CHANGE | STD.
DEV. | |---|-----------------------------|-----------------------------|---------------------------|--------------| | <u>Change in Layer 3</u>
Transmissivity Doubled
Transmissivity Halved | 10.47
5.04 | -2.20
-9.76 | .11
09 | .95
1.07 | | <u>Change in Overlying Layer 1</u>
Transmissivity Doubled
Transmissivity Halved | .13
.09 | 16
11 | 004
.002 | .02
.02 | | Change in Overlying Layer 2
Transmissivity Doubled
Transmissivity Halved | .57
.28 | 45
46 | 01
.007 | .05
.04 | TABLE 6 SENSITIVITY RESPONSES TO CHANGES IN STRESS (Head Changes in Feet) | | MAXIMUM
HEAD
INCREASE | MINIMUM
HEAD
INCREASE | AVERAGE
HEAD
CHANGE | STD.
DEV. | |--|-----------------------------|-----------------------------|---------------------------|--------------| | Change in Layer 1
Recharge at 110%
Recharge at 90% | 3.11
0 | 0
-1.42 | .43
33 | .45
.22 | | Max. ET Rate at 110% | · 0 | -1.56 | 27 | .21 | | Max ET Rate at 90% | 3.93 | 0 | .47 | .60 | | ET ext. depth at 4 ft. | .61 | 0 | .19 | .14 | | ET ext. depth at 6 ft. | 0 | 58 | 18 | .13 | | Change in Layer 2
Recharge at 110%
Recharge at 90% | 3.09
0 | 0
-1.39 | .40
31 | .44
.21 | | Max ET Rate at 110% | 0 | -1.39 | 31 | .21 | | Max ET Rate at 90% | 3.90 | 0 | .49 | .57 | | ET ext. depth at 4 ft. | .53 | 0 | .17 | .12 | | ET ext. depth at 6 ft. | 0 | - 49 | 17 | .12 | | Change in Layer 3
Recharge at 110%
Recharge at 90% | 1.09
0 | 0
56 | .17
13 | .25
.81 | | Max ET Rate at 110% | 0 | 45 | 11 | .15 | | Max ET Rate at 90% | 1.36 | 0 | .18 | .29 | | ET ext. depth at 4 ft. | .48 | 0 | .08 | .12 | | ET ext. depth at 6 ft. | 0 | 48 | 08 | .12 | ## Layer 1 (Water Table Aquifer) Generally, simulated water levels in layer 1 were not sensitive to changes in aquifer parameters. Changing the hydraulic conductivity caused some changes in head levels near areas where withdrawals occur, but these changes are localized. Layers 2 and 3 react to changes in the aquifer parameters in layer 1 in a similar manner. As expected, simulated water levels in layer 1 are sensitive to changes in stress. This layer is most sensitive to recharge, followed by the ET rate, and ET extinction depth. Layers 2 and 3 react to changes in stresses in a similar manner. ## Layer 2 (Lower Tamiami Aquifer) Simulated heads in layer 2 are also insensitive to changes in aquifer parameters, with the exception of Vcont between layers 1 and 2. Doubling this parameter resulted in a maximum rise in simulated head of 3.79 feet (in a heavily pumped area), but on average the heads did not significantly change. However, when the layer 1 Vcont was halved, the average simulated head dropped almost 0.2 feet. This is expected, as leakage from layer 1 is the major source of flow into layer 2. ## Layer 3 (Sandstone Aquifer) Simulated heads in layer 3 are sensitive to changes in Vcont between layers 2 and 3, and only slightly sensitive to changes in the layer 3 transmissivity. Doubling transmissivity resulted in a maximum rise in head of 10.47 feet, with an average rise of 0.12 feet, while halving transmissivity caused simulated head to decline a maximum of 9.76 feet, with an average decline of 0.06 feet. The largest changes in heads are near areas of large withdrawals. Layer 3 is slightly more sensitive to changes in transmissivity than layer 2 because it has lower transmissivity values. Simulated heads in layer 3 are most sensitive to changes in Vcont between layers 2 and 3. Doubling this parameter resulted in a maximum rise in simulated head of 6.83 feet, with an average rise of 0.47 feet. Halving the layer 2 Vcont resulted in a maximum decline in simulated head of 9.28 feet, with an average decline of 0.88 feet. This is expected, as leakage from the layer 2 accounts for 98% of the inflow to layer 3. ### PREDICTIVE SCENARIO ### INTRODUCTION One steady state predictive scenario was evaluated. For this run, the following changes were made from the final calibration data: - 1. Recharge was set to the amount expected in a 2-in-10 year drought event (rainfall approximately 80% of average), - 2. The pumpage file was modified to represent the additional irrigation requirements during the 2-in-10 year drought, and - 3. All proposed wells and crops requested in water use permits issued through November 1989 were represented in this scenario. Projected demands for public water supply were also included. ### RESULTS The simulated head and head declines discussed in this section are the average for a given model cell. Actual head decline caused by the simulated drought may be greater or lesser due to the effects of cell-wide averaging. ## Layer 1 (Water Table Aquifer) Figure 35 shows the water levels within layer 1 (water table aquifer) for average conditions. Figure 36 shows the predicted decline in simulated water levels expected in a 2-in-10 year drought. It can be seen that approximately 50% of the water table aquifer within the modeled area will undergo a simulated head decline of one foot or more. This is a regional effect of the decreased amount of recharge during the drought. There are several localized areas showing greater simulated head declines, all as a result of well withdrawals. The area in southeast Hendry County showing four feet of head decline is a result of increased withdrawals in the lower Tamiami aquifer. This causes a corresponding increase in the leakage from the water table aquifer into the lower Tamiami aquifer. The area northwest of Immokalee showing a simulated head decline of three feet is caused by increased withdrawals in both the water table and sandstone aquifers. The same is true for the area west of LaBelle that exhibits a simulated head decline of four feet. The area of simulated head decline of one foot that extends south into central Hendry County is caused by increased withdrawals from the water table aquifer just south of the Hendry County - Glades County border, and a proposed agricultural withdrawal from the lower Tamiami aquifer north of highway 832. Simulated water level declines in excess of one foot may impact the water levels and hydroperiods of some wetlands. # Layer 2 (Lower Tamiami Aquifer) Figure 37 shows the simulated head distribution within layer 2 (lower Tamiami aquifer) for average conditions. Figure 38 shows the predicted decline in simulated head expected in a 2-in-10 year drought. As with layer 1 (water table aquifer), approximately 50% of the lower Tamiami aquifer in the modeled area shows a simulated head decline of one foot or more as a result of a decrease in the recharge rate. In addition, three localized areas show a larger simulated head decline. The first is a large area corresponding to the intense water withdrawals for agricultural STEADY STATE WATER LEVELS, LAYER 2 (LOWER TAMIAMI AQUIFER) irrigation in southeast Hendry County. Expected head declines are in excess of four feet. The second area is in central Hendry County, and is a result of a proposed large scale agricultural operation. The third area is west of LaBelle an is a result of increased withdrawals in the underlying sandstone aquifer causing an increase in the amount of leakage from the water table and lower Tamiami aquifers into the sandstone aquifer. All of these simulated head declines may be reaching levels where they will affect adjacent users, particularly those with wells equipped with centrifugal pumps. #### Layer 3 (Sandstone Aquifer) Figure 39 shows the simulated head distribution within layer 3 (sandstone aquifer) for average conditions. Figure 40 shows the predicted decline in simulated head expected in a 2-in-10 year drought. As expected, cones of depression around intense water uses deepen, some in excess of 10 feet. In addition, predicted head declines greater than one foot cover more than 75% of the sandstone aquifer within the modeled area. The predicted declines are significant because they are at levels which are beginning to affect the overlying aquifers by inducing greater amounts of leakage, and thereby affecting heads in the overlying aquifers. Layer 3 (sandstone aquifer) shows greater impacts to well withdrawals than the shallower aquifers because it exhibits lower values of transmissivity and storage, and because well withdrawals account for almost 80% of the flow out of the sandstone aquifer. PREDICTED WATER LEVEL DECLINE, LAYER 3 (SANDSTONE AQUIFER), STEADY STATE CONDITIONS #### RESULTS AND CONCLUSIONS - 1. The most important source of recharge to the Surficial Aquifer System and Intermediate Aquifer System in Hendry County is rainfall. Under average conditions for the three year period 1986 through 1988, approximately 96% of the recharge in the study area was provided by rainfall. The remaining 4% came from ground water flow into the modeled area, primarily from Glades and Collier Counties. - 2. Evapotranspiration accounts for the majority of outflow from the modeled area (approximately 87%). The remaining outflow is comprised of well withdrawals (7%), ground water flow out of the modeled area, primarily to Lee and Collier Counties (5%), and discharge to surface water bodies (less than 1%). - 3. The water table aquifer is not significantly impacted on a regional basis by water use under average conditions. However, in southeastern Hendry
County a localized area of significant impact occurs as a result of well withdrawals in the underlying lower Tamiami aquifer. The increased leakage through the Tamiami confining zone caused by these withdrawals results in lower water levels in the water table aquifer. During simulations of moderate drought conditions (2-in 10 year drought), the water table aquifer begins to show some signs of stress. Regional water level declines of one foot or more cover approximately 50% of the aquifer in the modeled area. This regional decline is caused by a decrease in recharge due to the drought. In addition, several localized areas of water level decline due to well withdrawals in the water table or underlying aquifers appear. Simulated water level decline in these areas exceeds four feet. The affected areas are in southeastern Hendry County, northwest of Immokalee, and west of LaBelle. The simulated water level declines are enough to cause significant impacts to wetlands. 4. The model suggests that the lower Tamiami aquifer is beginning to show major impacts as a result of well withdrawals during average conditions. There is a regional cone of depression caused by agricultural irrigation in southeastern Hendry County. These withdrawals are influencing simulated regional flow patterns at distances up to eleven miles. Simulated water level declines range between ten and fifteen feet. However, as a result of cell-wide averaging, drawdowns at individual wells in the area may be much larger, and may be approaching the top of the aquifer. Other areas showing similar impacts, but on a smaller scale, are located near the north end of the L-1 canal, north-central Hendry County, the extreme southern portion of Hendry County, and along highway 82 near the Hendry County - Collier County - Lee County border. The lower Tamiami aquifer is also impacted by well withdrawals in the underlying sandstone aquifer in the area where Hendry, Lee, and Collier Counties meet. During simulations of moderate drought conditions (2-in 10 year drought), the lower Tamiami aquifer shows signs of increasing stress. Regional water level declines of one foot or more cover approximately 50% of the aquifer in the modeled area. As with the water table aquifer, the regional decline is caused by a decrease in recharge due to the drought. In addition, several localized areas of water level decline (in excess of four feet due to well withdrawals from the lower Tamiami or underlying aquifers) appear throughout the county. For example, the area in southeast Hendry County is a result of increased withdrawals for agricultural irrigation. The area in north central Hendry County is caused by a proposed agricultural operation. The area west of LaBelle is probably a result of decreased recharge and increased withdrawals on the underlying sandstone aquifer. 5. The model suggests that the sandstone aquifer is heavily impacted by current well withdrawals, which account for approximately 80% of the flow out of the aquifer within the study area during average conditions. Because of the hydraulic properties of the sandstone aquifer, cones of depression that form around pumped wells are deeper and exhibit a smaller areal extent than cones typically found in the lower Tamiami aquifer. The most significant cone of depression is located where Hendry, Lee and Collier Counties converge, where the cones from two large withdrawals are beginning to merge into one larger cone. A significant impacted area also occurs west of LaBelle, where the sandstone aquifer is characterized by very low values of transmissivity. Withdrawals from the sandstone aquifer also affecting water levels in the overlying aquifers. During simulations of moderate drought conditions (2-in 10 year drought), the sandstone aquifer shows the most stress of all the modeled aquifers. Regional water level declines of one foot or more cover more than 75% of the aquifer in the modeled area. Simulated head declines due to increased withdrawals exceed 10 feet in areas of heavy withdrawals for agricultural irrigation. In the area west of LaBelle, domestic wells with centrifugal pumps are impacted during drought conditions. The model indicates that water levels in this area are five to ten feet below sea level during the simulated drought. Since land surface averages 20 feet above sea level, the resulting depth to water distance of 25 to 30 feet is at or beyond the lift capability of centrifugal pumps. Actual depth to water distances will vary depending on actual land surface elevations and head differences resulting from cell-wide averaging. - 6. Agricultural irrigation accounts for over 99% of the ground water withdrawals in Hendry County. However, data on actual amounts withdrawn is almost nonexistent. Actual water use data would increase confidence in the calibration of the model, particularly in areas in heavy ground water use. In addition, accurate projections of future agricultural water use will be necessary for the development of a water supply plan for the area including Hendry County. - 7. The model in its present configuration is not accurate in assessing impacts on a small scale, due to the regional nature of the model grid. As a result, small scale impacts on adjacent users or small wetland areas may be overlooked due to cell-wide averaging. Improved grid resolution is needed to better assess these small scale impacts. Specific areas of concern include southeast Hendry County (in and around the regional cone of depression), west of LaBelle (Ft. Denaud and Muse areas), and the area where Hendry, Lee, and Collier Counties meet. - 8. The model was difficult to calibrate within the specified constraints in several localized areas. Probable reasons are cell-wide averaging or uncertainty in aquifer parameters or stress rates. Future revisions to the model should be concentrated in these areas to improve the confidence level of the model. #### RECOMMENDATIONS - 1. Strict management of the sandstone aquifer in Hendry County is needed in light of the projected declines in water levels. Minimum water levels should be established for the sandstone aquifer, and all permitted withdrawals should be managed in order to maintain these levels. Increased monitoring of water levels and water withdrawals are needed to ensure that the minimum levels are maintained. This can be accomplished through the regulatory process. Setting of minimum levels should be included in the development of the water supply plan for this area. - 2. The lower Tamiami aquifer in southeastern Hendry County is also significantly impacted by existing withdrawals. Minimum water levels should be established for the lower Tamiami aquifer in this area. Permitted withdrawals should be managed in order to maintain these levels. Increased monitoring of water levels, both in the lower Tamiami and water table aquifers, is needed to ensure that the minimum levels are maintained. Withdrawals should also be monitored. This can be accomplished through the regulatory process. Setting of minimum levels should be included in the development of the water supply plan for this area. - 3. The model should be used in the evaluation of water use permits, and in regional planning projects. Where a finer scale site specific model is required, the regional model could be used to provide the boundary conditions. The model should continue to be refined and updated whenever additional data becomes available. In doing this, emphasis should be placed on the parameters to which the model is most sensitive, including vertical conductance of the confining zone and evapotranspiration. Specific areas of concern are southeast Hendry County, the area west of LaBelle, and the area where Hendry, Lee, and Collier Counties meet. - 4. Accurate projections of agricultural ground water use in Hendry County is essential to the planning process. These projections must include acreages, crop types, and locations likely to be developed, in order to supply reasonable projections of water conditions. This should be included in the development of the water supply plan for this area. - 5. More monitor wells should be constructed, particularly in the lower Tamiami and sandstone aquifers, in areas of intense withdrawal and areas of lower confidence in the calibration of the model. These wells should be added to the USGS monitor network for long term data collection. This will provide additional data for the refined calibration of updated models. - 6. An interface should be developed with the Lee County model, and the Collier County model currently under development. This will result in a truly regional model that will encompass the entire flow regime for the Surficial Aquifer System and the Intermediate Aquifer System in the lower west coast planning area. The interface with the Lee County model is of particular importance since the models indicate that much of the flow into the sandstone aquifer in Lee County consists of lateral flow originating in Hendry County. 7. Interactions between ground water and surface water should be investigated. The network of small canals found in Hendry County should be examined, their effects on ground water flows quantified, and input to the model for evaluation. This could improve the calibration of the water table aquifer. #### REFERENCES - Bower, R.F., K. M. Adams, and J. I. Restrepo. 1990. A Three Dimensional Finite Difference Ground Water Flow Model of Lee County, Florida. South Florida Water Management District Technical Publication 90-1. - Cooke, C.W., and S. Mossom. 1929. Geology of Florida. Florida Geological Survey 20th Annual Report. - Driscoll, F. G. 1986. Groundwater and Wells. Johnson Division. - DuBar, J. R. 1958. Neogene Stratigraphy of Southwestern Florida. Gulf Coast Association of Geological Societies Transactions, Volume VIII. - Fetter, C. W. 1980. Applied Hydrogeology. Charles E. Merrill Company. - Fish, J. E., C. R. Causaras, and T. H. O'Donnell. 1983.
Records of Selected Wells and Lithologic Logs of Test Holes, Hendry County and Adjacent Areas, Florida. U. S. Geological Survey Open-File Report 83-134. - James M. Montgomery Consulting Engineers, Inc. 1988. Lee County Water Resources Management Project. - Klein, H., M. C. Schroeder, and W. F. Lichtler. 1964. Geology and Ground Water Resource of Glades and Hendry Counties, Florida. Florida Geological Survey Report of Investigations No. 37. - Knapp, M. S., W. S. Burns, and T. S. Sharp. 1986. Preliminary Assessment of the Ground Water Resources of Western Collier County, Florida. South Florida Water Management District Technical Publication No. 86-1. - Kuiper, L. K. 1987. Computer Program for Solving Ground Water Flow Equations by the Preconditioned Conjugate Gradient Method. U.S. Geological Survey, Water Resources Investigations Report 87-4091. - Leach, S. D. 1980. Source, Use, and Disposition of Water in Florida, 1980. U. S. Geological Survey Water Resources Investigations 82-4090. - Leach, S. D. 1984. Projected Public Supply and Rural (Self-Supplied) Water Use in Florida Through Year 2020. U.S. Geological Survey Map Series No. 108. - Matson, G. G., and F. G. Clapp. 1909. A Preliminary Report on the Geology of Florida With Special Reference to the Stratigraphy. Florida Geological Survey Second Annual Report. - Matson, G. G., and S. Sanford. 1913. Geology and Ground Waters of Florida. U. S. Geological Survey Water-Supply Paper No.319. - McDonald, M. G. and A. W. Harbaugh. 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6, Chapter A1. - Missimer, T. M. 1984. The Geology of South Florida: Environments of South Florida Present and Past. Miami Geological Society. #### REFERENCES (continued) - Parker, G. G., and C. W. Cooke. 1944 Late Cenozoic Geology of Southern Florida with a Discussion of the Groundwater. Florida Geological Survey Bulletin No. 50. - Parker, G. G., G. E. Ferguson, S. K. Love, and others. 1955. Water Resource of Southeastern Florida. U. S. Geological Survey Water Supply Paper No. 1255. - Peck, D. M., D. H. Slater, T. M. Missimer, S. W. Wise, and T. H. O'Donnell. 1979. Stratigraphy and Paleoecology of the Tamiami Formation in Lee and Hendry Counties, Florida. Gulf Coast Association of Geological Societies Transactions, Volume 29. - Puri, H. S., and R. O. Vernon. 1964. Summary of the Geology of Florida and a Guidebook to the Classic Exposures. Florida Geological Survey Special Publication No. 5 (revised). - Scott, T. M. 1988. The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida. Florida Geological Survey Bulletin No. 59. - Shine, M. J., D. G. J. Padgett, and W. M. Barfknecht. 1989. Ground Water Resource Assessment Of Eastern Palm Beach County, Florida. South Florida Water Management District Technical Publication No. 88-4. - Slater, D. H. 1978. The Stratigraphy and Paleoecology of the Tamiami Formation in Hendry County, Florida. Unpublished Master's Thesis, Florida State University, Department of Geology. - Smith, K. R., and K. M. Adams. 1988. Ground Water Resource Assessment of Hendry County, Florida. South Florida Water Management District Technical Publication No. 88-12. - Smith, K. R., T. S. Sharp, and G. Shih. 1988. Investigation of Water Use, Land Use, and the Ground Water Monitor Network in Hendry County, Florida. South Florida Water Management District Technical Memorandum. - Southeastern Geological Society Committee on Florida Hydrostratigraphic Units Definition. 1986. Hydrogeological Units of Florida. Florida Geological Survey Special Publication No. 28. - South Florida Water Management District. 1985. Management of Water Use Permitting Information, Volume III. - United States Department of Agriculture, Soil Conservation Service. 1970. Irrigation Water Requirements. Technical Release No. 21. - Viessman, W., J. W. Knapp, G. L. Lewis, and T. E. Harbaugh, 1977. Introduction to Hydrology. A Dun-Donnelley Publisher, New York. - Wedderburn, L. A., M. S. Knapp, D. P. Waltz, and W. S. Burns. 1982. Hydrogeologic Reconnaissance of Lee County, Florida. South Florida Water Management District Technical Publication No. 82-1. # APPENDIX A AQUIFER PARAMETERS # LIST OF FIGURES - APPENDIX A | <u>Figure</u> | | Page | |---------------|--|------| | A-1 | Bottom of Layer 1 (Water Table Aquifer) | 77 | | A-2 | Hydraulic Conductivity, Layer 1 (Water Table Aquifer) | 78 | | A-3 | Thickness of the Tamiami Confining Zone | 79 | | A-4 | Vertical Hydraulic Conductivity of the Tamiami
Confining Zone | 80 | | A-5 | Vcont, Bottom of Layer 1 | 81 | | A-6 | Storage Coefficient, Layer 2 (Lower Tamiami Aquifer) | 82 | | A-7 | Transmissivity, Layer 2 (Lower Tamiami Aquifer) | 83 | | A-8 | Thickness of the Upper Hawthorn Confining Zone | 84 | | A-9 | Vertical Hydraulic Conductivity of the Upper Hawthorn Confining Zone | 85 | | A-10 | Vcont, Bottom of Layer 2 | 86 | | A-11 | Storage Coefficient, Layer 3 (Sandstone Aquifer) | 87 | | A-12 | Transmissivity, Layer 3 (Sandstone Aquifer) | 88 | Figure A-1. BOTTOM OF LAYER 1 (WATER TABLE AQUIFER) STORAGE COEFFICIENT, LAYER 2 (LOWER TAMIAMI AQUIFER) Figure A-6. STORAGE COEFFICIENT, LAYER 3 (SANDSTONE AQUIFER) Figure A-12. TRANSMISSIVITY, LAYER 3.(SANDSTONE AQUIFER) # APPENDIX B RIVER PACKAGE INPUT DATA | τ | ъ. | 0 1 | Average | River Bed | River Bottom | |-------|--------------------------|------------|---------|-----------|----------------------| | Layer | $\frac{\text{Row}}{1.9}$ | Column | | | Elevation (ft. NGVD) | | 1 | 13 | 38 | 12.83 | 175.83 | 0 | | 1 | 13 | 39 | 12.83 | 175.83 | 0 | | 1 | 13 | 40 | 12.83 | 263.74 | 0 | | 1 | 13 | 41 | 12.83 | 175.83 | 0 | | 1 | 14 | 42 | 12.83 | 351.65 | 0 | | 1 | 14 | 43 | 12.83 | 234.43 | 0 | | 1 | 14 | 44 | 12.83 | 410.26 | 0 | | 1 | 15
16 | 4 5 | 12.71 | 410.26 | 0 | | 1 | 16 | 45 | 12.71 | 410.26 | 0 | | 1 | 17 | 45 | 12.71 | 410.26 | 0 | | 1 | 18 | 45 | 12.71 | 410.26 | 0 | | 1 | 19 | 45 | 12.71 | 410.26 | 0 | | 1 | 20 | 45 | 12.71 | 410.26 | 0 | | 1 | 21 | 45 | 12.71 | 410.26 | 0 | | 1 | 22 | 45 | 12.71 | 410.26 | 0 | | 1 | 23 | 45 | 12.71 | 410.26 | 0 | | 1 | 24 | 45 | 12.71 | 410.26 | 0 | | 1 | 25 | 45 | 12.71 | 410.26 | 0 | | 1 | 26 | 45 | 12.71 | 410.26 | 0 | | 1 | 27 | 45 | 12.71 | 410.26 | 0 | | 1 | 28 | 45 | 12.71 | 410.26 | 0 | | 1 | 29 | 45 | 12.71 | 410.26 | 0 | | 1 | 30 | 4 5 | 12.71 | 410.26 | 0 | | 1 | 31 | 45 | 12.71 | 410.26 | 0 | | 1 | 32 | 45 | 12.71 | 410.26 | 0 | | 1 | 33 | 45 | 12.71 | 470.64 | 0 | | 1 | 33 | 46 | 12.71 | 93.24 | 0 | | 1 | 34 | 46 | 12.71 | 609.17 | 0 | | 1 | 35 | 46 | 12.71 | 93.24 | 0 | | 1 | 35 | 47 | 12.71 | 515.93 | 0 | | 1 | 36 | 47 | 12.71 | 234.43 | 0 | | 1 | 36 | 48 | 12.71 | 375.18 | 0 | | 1 | 37 | 48 | 12.71 | 375.18 | 0 | | 1 | 37 | 49 | 12.71 | 187.37 | 0 | | 1 | 38 | 49 | 11.19 | 308.02 | Ö | | 1 | 38 | 50 | 11.19 | 439.56 | Ö | | 1 | 38 | 51 | 11.19 | 439.56 | Ö | | 1 | 38 | 52 | 11.19 | 439.56 | Ö | | | | | * | | | ^{*} Average monthly stage (1986-1988) used in steady state runs. Actual monthly values were use in transient runs. ^{**} River bed conductance for each cell is calculated as the product of the average wetted perimiter of the river, the length of the river reach in a cell, and the hydraulic conductivity of the river bed; divided by the thickness of the river bed. | | | | Average | River Bed | River Bottom | |-------|-----|-----------|---------|---------------|----------------------| | Layer | Row | Column | Stage* | Conductance** | Elevation (ft. NGVD) | | 1 | 38 | 53 | 11.19 | 439.56 | 0 | | 1 | 38 | 54 | 11.19 | 439.56 | Ö | | 1 | 13 | 53 | 10.96 | 709.40 | Ō | | 1 | 14 | 53 | 10.96 | 709.40 | Ö | | 1 | 15 | 52 | 10.96 | 451.77 | Ō | | 1 | 16 | 52 | 10.96 | 644.69 | Ö | | 1 | 17 | 52 | 10.96 | 644.69 | Ö | | 1 | 18 | 52 | 10.96 | 644.69 | Ö | | 1 | 19 | 51 | 10.96 | 644.69 | 0 | | 1 | 20 | 51 | 10.96 | 644.69 | Ŏ | | 1 | 21 | 51 | 10.96 | 644.69 | Ō | | 1 | 22 | 51 | 10.96 | 644.69 | Ö | | 1 | 23 | 52 | 10.96 | 579.69 | Ō | | 1 | 24 | 52 | 10.96 | 644.69 | Ō | | 1 | 25 | 52 | 10.96 | 644.69 | Ö | | 1 | 26 | 52 | 10.96 | 644.69 | Ö | | 1 | 27 | 52 | 10.96 | 644.69 | 0 | | 1 | 28 | 53 | 10.96 | 644.69 | Ö | | 1 | 29 | 53 | 10.96 | 644.69 | Ö | | 1 | 30 | 53 | 10.96 | 644.69 | Ö | | 1 | 31 | 53 | 10.96 | 644.69 | Ö | | 1 | 32 | 53 | 10.96 | 257.63 | Ö | | 1 | 32 | 54 | 10.96 | 387.06 | Ö | | 1 | 33 | 54 | 10.96 | 644.69 | Ō | | 1 | 34 | 54 | 10.96 | 644.69 | Ō | | 1 | 35 | 54 | 10.96 | 644.69 | Ö | | 1 | 36 | 54 | 10.96 | 387.06 | 0 | | 1 | 37 | 54 | 10.96 | 387.06 | 0 | | 1 | 38 | 52 | 10.81 | 439.56 | Õ | | 1 | 39 | 52 | 10.81 | 439.56 | 0 | | 1 | 40 | 52 | 10.81 | 439.56 | Ō | | 1 | 41 | 52 | 10.81 | 439.56 | 0 | | 1 | 42 | 52 | 10.81 | 439.56 | Õ | | 1 | 43 | 52 | 10.81 | 439.56 | Ó | | 1 | 44 | 52 | 10.81 | 439.56 | Ŏ | | 1 | 45 | 52 | 10.81 | 439.56 | Õ | | 1 | 46 | 52 | 10.81 | 439.56 | Ö | | 1 | 47 | 52 | 10.81 | 439.56 | Ö | ^{*} Average monthly stage (1986-1988) used in steady state runs. Actual monthly values were use in transient runs. ^{**} River bed conductance for each cell is calculated as the product of the average wetted perimiter of the river, the length of the river reach in a cell, and the hydraulic conductivity of the river bed; divided by the thickness of the river bed. | | r Bottom | |--|---------------| | | on (ft. NGVD) | | *** | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | 1 45 46 14.63 175.38 0
1 45 47 14.63 468.98 0 | | | 1 46 47 14.63 468.98 0
1 46 47 14.63 644.91 0 | | | 1 47 47 14.63 644.51 0
1 47 47 14.63 66.60 0 | | | 1 47 48 14.63 586.08 0 | | | 1 40 37 14.63 515.87 0 | | | 1 40 38 14.63 644.69 0 | | | 1 40 39 14.63 644.69 0 | | | 1 40 40 14.63 644.69 0 | | | 1 40 41 14.63
644.69 0 | | | 1 40 42 14.63 7.33 0 | | | | | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 1 11 4 3.22 2579.64 -10 | | | | | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 1 11 7 3.22 2499.72 -10 | | | 1 11 8 3.22 2353.20 -10 | | | 1 11 9 3.22 1875.90 -10 | | | 1 10 9 3.22 2579.64 -10 | | | 1 9 9 3.22 710.40 -10 | | | 1 9 10 3.22 2814.96 -10 | | | 1 9 11 3.22 2353.20 -10 | | | 1 9 12 3.22 2814.96 -10 | | | 1 9 13 3.22 1172.16 -10 | | ^{*} Average monthly stage (1986-1988) used in steady state runs. Actual monthly values were use in transient runs. ^{**} River bed conductance for each cell is calculated as the product of the average wetted perimiter of the river, the length of the river reach in a cell, and the hydraulic conductivity of the river bed; divided by the thickness of the river bed. | Layer | Row | Column | Average
Stage* | River Bed
Conductance** | River Bottom
Elevation (ft. NGVD) | |-------|------------------|------------|-------------------|----------------------------|--| | 1 | 8 | 13 | 3.22 | 2814.96 | -10 | | 1 | 8
7 | 14 | 3.22 | 936.84 | -10 | | 1 | 7 | 14 | 3.22 | 140.74 | -10 | | 1 | 7 | 15 | 3.22 | 1875.90 | -10 | | 1 | 8 | 15 | 3.22 | 710.40 | -10 | | 1 | 8 | 16 | 3.22 | 2579.64 | -10 | | 1 | 7 | 17 | 3.22 | 2353.20 | -10 | | 1 | 7 | 18 | 3.22 | 1875.90 | -10 | | 1 | 6 | 18 | 3.22 | 936.84 | -10 | | 1 | 6 | 19 | 3.22 | 2814.96 | -10 | | 1 | 6 | 20 | 3.22 | 2579.64 | -10 | | 1. | 6 | 21 | 3.22 | 2353.20 | -10 | | 1 | 6 | 22 | 11.21 | 2353.20 | -5 | | 1 | 6 | 23 | 11.21 | 2579.64 | -5 | | 1 | 6 | 24 | 11.21 | 2353.20 | -0 | | 1 | 6 | 25 | 11.21 | 2353.20 | -5
-5 | | 1 | 6 | 26 | 11.21 | 2579.64 | -5 | | 1 | 6 | 27 | 11.21 | 2579.64 | -5 | | 1 | 6 | 28 | 11.21 | 2353.20 | -5 | | 1 | 6 | 29 | 11.21 | 2353.20 | -5 | | 1 | 6 | 30 | 11.21 | 2353.20 | -5 | | 1 | 6 | 31 | 11.21 | 2353.20 | -5 | | 1 | 6 | 32 | 11.21 | 2353.20 | -5 | | 1 | 6 | 33 | 11.21 | 2353.20 | -5 | | 1 | 6 | 34 | 11.21 | 2353.20 | -5 | | 1 | 5 | 33 | 11.21 | 2353.20 | -5 | | 1 | 5 | 34 | 11.21 | 2353.20 | -5 | | 1 | 5
5
2
3 | 35 | 11.21 | 2353.20 | -5
-5
-5
-5
-5
-5
-5
-5
-5 | | 1 | 2 | 33 | 11.21 | 2353.32 | -5 | | 1 | 3 | 33 | 11.21 | 2353.32 | -5 | | 1 | 4 | 33 | 11.21 | 2353.32 | -5 | | 1 | 5 | 33 | 11.21 | 2344.32 | -5 | | 1 | 4 | 3 5 | 11.21 | 2353.20 | -5
-5 | | 1 | 4 | 36 | 11.21 | 444.00 | -5 | | 1 | 3 | 36 | 11.21 | 281.50 | -5
-5 | | 1 | 12 | 7 | 3.63 | 351.65 | -5 | | 1 | 13 | 7 | 3.63 | 351.65 | -4 | | 1 | 14 | 7 | 3.63 | 470.64 | -3 | ^{*} Average monthly stage (1986-1988) used in steady state runs. Actual monthly values were use in transient runs. ^{**} River bed conductance for each cell is calculated as the product of the average wetted perimiter of the river, the length of the river reach in a cell, and the hydraulic conductivity of the river bed; divided by the thickness of the river bed. | | | | Average | River Bed | River Bottom | |--------------|----------------------------|---------------|---------|---------------|----------------------| | <u>Layer</u> | $\underline{\mathbf{Row}}$ | <u>Column</u> | Stage* | Conductance** | Elevation (ft. NGVD) | | 1 | 15 | 7 | 3.63 | 2353.20 | -2 | | 1 | 15 | 8 | 3.63 | 234.43 | -1 | | 1 | 16 | 8 | 3.63 | 218.50 | 0 | | 1 | 16 | 9 | 3.63 | 328.56 | 1 | | 1 | 17 | 9 | 3.63 | 328.56 | 2 | | 1 | 17 | 10 | 3.63 | 328.56 | 3 | | 1 | 18 | 10 | 3.63 | 284.16 | 4 | | 1 | 18 | 11 | 3.63 | 375.18 | 5 | | 1 | 19 | 11 | 3.63 | 284.16 | 6 | | 1 | 19 | 12 | 3.63 | 328.56 | 7 | | 1 | 20 | 12 | 3.63 | 375.18 | 8 | | 1 | 20 | 13 | 3.63 | 239.76 | 9 | | 1 | 31 | 10 | 19.96 | 4107.00 | 10 | | 1 | 31 | 11 | 19.96 | 2.55E + 06 | 10 | | 1 | 32 | 10 | 19.96 | 8.14E + 06 | 10 | | 1 | 32 | 11 | 19.96 | 2.11E + 07 | 10 | | 1 | 32 | 12 | 19.96 | 2.89E + 07 | 10 | | 1 | 33 | 11 | 19.96 | 2.11E + 07 | 10 | | 1 | 33 | 12 | 19.96 | 77478.00 | 10 | ^{*} Average monthly stage (1986-1988) used in steady state runs. Actual monthly values were use in transient runs. ^{**} River bed conductance for each cell is calculated as the product of the average wetted perimiter of the river, the length of the river reach in a cell, and the hydraulic conductivity of the river bed; divided by the thickness of the river bed. # APPENDIX C MAPS OF MONTHLY RAINFALL ## LIST OF FIGURES - APPENDIX C | Figure | · | Page | |--------|--------------------------|------| | C-1 | Rainfall, January 1986 | . 98 | | C-2 | Rainfall, February 1986 | . 99 | | C-3 | Rainfall, March 1986 | 100 | | C-4 | Rainfall, April 1986 | 101 | | C-5 | Rainfall, May 1986 | 102 | | C-6 | Rainfall, June 1986 | 103 | | C-7 | Rainfall, July 1986 | 104 | | C-8 | Rainfall, August 1986 | 105 | | C-9 | Rainfall, September 1986 | 106 | | C-10 | Rainfall, October 1986 | 107 | | C-11 | Rainfall, November 1986 | 108 | | C-12 | Rainfall, December 1986 | 109 | | C-13 | Rainfall, January 1987 | 110 | | C-14 | Rainfall, February 1987 | 111 | | C-15 | Rainfall, March 1987 | 112 | | C-16 | Rainfall, April 1987 | 113 | | C-17 | Rainfall, May 1987 | 114 | | C-18 | Rainfall, June 1987 | 115 | | C-19 | Rainfall, July 1987 | 116 | | C-20 | Rainfall, August 1987 | 117 | | C-21 | Rainfall, September 1987 | 118 | | C-22 | Rainfall, October 1987 | 119 | | C-23 | Rainfall, November 1987 | 120 | | C-24 | Rainfall, December 1987 | 121 | | C-25 | Rainfall, January 1988 | 122 | # LIST OF FIGURES - APPENDIX C (CONTINUED) | <u>Figure</u> | | Page | |---------------|--------------------------|------| | C-26 | Rainfall, February 1988 | 123 | | C-27 | Rainfall, March 1988 | 124 | | C-28 | Rainfall, April 1988 | 125 | | C-29 | Rainfall, May 1988 | 126 | | C-30 | Rainfall, June 1988 | 127 | | C-31 | Rainfall, July 1988 | 128 | | C-32 | Rainfall, August 1988 | 129 | | C-33 | Rainfall, September 1988 | 130 | | C-34 | Rainfall, October 1988 | 131 | | C-35 | Rainfall, November 1988 | 132 | | C-36 | Rainfall, December 1988 | 133 | Figure C-1. RAINFALL, JANUARY 1986 Figure C-2. RAINFALL, FEBRUARY 1986 Figure C-3. RAINFALL, MARCH 1986 Figure C-4. RAINFALL, APRIL 1986 Figure C-5. RAINFALL, MAY 1986 Figure C-6. RAINFALL, JUNE 1986 Figure C-7. RAINFALL, JULY 1986 Figure C-8. RAINFALL, AUGUST 1986 Figure C.9. RAINFALL, SEPTEMBER 1986 Figure C-10. RAINFALL, OCTOBER 1986 Figure C-11. RAINFALL, NOVEMBER 1986 Figure C-12. RAINFALL, DECEMBER 1986 Figure C-13. RAINFALL, JANUARY 1987 Figure C-14. RAINFALL, FEBRUARY 1987 Figure C-15. RAINFALL, MARCH 1987 Figure C-16. RAINFALL, APRIL 1987 Figure C-17. RAINFALL, MAY 1987 Figure C-18. RAINFALL, JUNE 1987 Figure C-19. RAINFALL, JULY 1987 Figure C-20. RAINFALL, AUGUST 1987 Figure C-21. RAINFALL, SEPTEMBER 1987 Figure C-22. RAINFALL, OCTOBER 1987 Figure C-23. RAINFALL, NOVEMBER 1987 Figure C-24. RAINFALL, DECEMBER 1987 Figure C-25. RAINFALL, JANUARY 1988 Figure C-26. RAINFALL, FEBRUARY 1988 Figure C-27. RAINFALL, MARCH 1988 Figure C-28. RAINFALL, APRIL 1988 Figure C-29. RAINFALL, MAY 1988 Figure C-30. RAINFALL, JUNE 1988 Figure C-31. RAINFALL, JULY 1988 Figure C-32. RAINFALL, AUGUST 1988 Figure C-33. RAINFALL, SEPTEMBER 1988 Figure C-34. RAINFALL, OCTOBER 1988 Figure C-35. RAINFALL, NOVEMBER 1988 Figure C-36. RAINFALL, DECEMBER 1988 THIS PAGE INTENTIONALLY BLANK # APPENDIX D EVAPOTRANSPIRATION INPUT DATA ### LIST OF FIGURES - APPENDIX D | <u>Figure</u> | | <u>Page</u> | |---------------|-------------------------------------|-------------| | D-1 | Evapotranspiration Extinction Depth |
138 | #### **EVAPOTRANSPIRATION DATA** | Stress Period | Month/Year* | Maximum ET Rate** | |---------------|-----------------|-------------------| | 1 | January 1986 | 3.71 | | 2 | February 1986 | 4.91 | | $\frac{2}{3}$ | March 1986 | 6.99 | | 4 | April 1986 | 8.83 | | 4
5
6 | May 1986 | 9.37 | | 6 | June 1986 | 7.74 | | 7 | July 1986 | 7.33 | | 8 | August 1986 | 8.44 | | 9 | September 1986 | 6.59 | | 10 | October 1986 | 5.47 | | 11 | November 1986 | 4.18 | | 12 | December 1986 | 3.06 | | 13 | January 1987 | 3.94 | | 14 | February 1987 | 4.33 | | 15 | March 1987 | 4.84 | | 16 | April 1987 | 7.78 | | 17 | May 1987 | 9.19 | | 18 | June 1987 | 7.96 | | 19 | July 1987 | 6.84 | | 20 | August 1987 | 7.89 | | 21 | September 1987 | 5.54 | | 22 | October 1987 | 5.28 | | 23 | November 1987 | 3.82 | | 24 | . December 1987 | 3.72 | | 25 | January 1988 | 3.67 | | 26 | February 1988 | 4.21 | | 27 | March 1988 | 6.06 | | 28 | April 1988 | 7.02 | | 29 | May 1988 | 8.59 | | 30 | June 1988 | 7.54 | | 31 | July 1988 | 7.29 | | 32 | August 1988 | 7.11 | | 33 | September 1988 | 6.55 | | 34 | October 1988 | 6.21 | | 35 | November 1988 | 4.21 | | 36 | December 1988 | 3.83 | ^{*} Average monthly pan evaporation rates from stations at Clewiston, Labelle, and Hurricane Gate 1. ^{**} In inches per month. A rate of 3.72 inches per month was used in the steady state runs. Figure D-1. EVAPOTRANSPIRATION EXTINCTION DEPTH ## APPENDIX E WATER USE DATA #### INTRODUCTION This appendix contains information on the individual water use permits issued by the Water Use Division, Regulation Department, South Florida Water Management District. This information was used to compile the well withdrawal data file used in the model. Permits issued through November 1989 are included in this appendix. The information is organized into four spreadsheets. The first two spreadsheets contain information on the individual water use permits for agricultural use within Hendry County. The third spreadsheet contains information on individual water use permits for agricultural use within the buffer areas of Lee, Collier, Broward, Palm Beach, Glades, and Charlotte Counties. A legend for these spreadsheets is included on page 141. The final spreadsheet contains information on individual water use permits for public supply, commercial, industrial, and mining uses within the study area. A legend for this spreadsheet can be found on page 193. ``` AN.ALL. = Annual Permitted Allocation ALL.UNT. =
Annual Allocation Units 01 = MGD 02 = MGM 03 = MGY 04 = AC-FT MAXMO = Maximum Monthly Permitted Allocation 01 = MGD 02 = MGM C3 = AC-FT CC = County Code (from permit number) DATE ISS = Date Permit Issued (mo/yr) USE TYPE = AG, IND, GLF, PWS, COM, REC SRC = Source (SW,GW, BOTH) NO.WLS. - Number of ACTIVE permitted wells SWPMPS = Number of Surface Water Pumps DEVNO. = Development Number(for projected uses only) AQ. = Aquifer 01 = Water Table 02 = Surficial (Semi-confined) 03 = Lower Tamiami 04 = Sandstone 05 = mid-Hawthorn 06 = lower Hawthorn 07 = Suwannee 08 = Floridan 09 = Biscayne CROP TYPE = Blaney-Criddle Code 11 = Alfalfa 12 = Avacado 13 = Citrus 14 = Grapes 15 = Turf 16 = Suger Beet 20 = Pasture 51 = Dry Beans 52 = Green Beans 53 = Grain Corn 54 = Silage Corn 55 = Sweet Corn 56 = Melons 57 = Peas. 58 = Potato 59 = Soybeans 60 = Tomato 61 = Small Vegetables 5 or 70 = Nursery RAINST = Rain Station Code Number 1 = NAPLES 2 = FT. MYERS 3 - WEST PALM BEACH 4 = STUART 5 = FT. LAUDERDALE 6 = KISSIMMEE 7 = MELBOURNE 8 = ORLANDO 9 = TITUSVILLE 10 = FELLSMERE 11 = FT. PIERCE 12 = OKEECHOBEE 13 = AVON PARK 14 = MOORE HAVEN 15 = LABELLE 16 = BELLE GLADE 17 = LOXAHATCHEE 18 = JUPITER 21 = TAMIAMI 4 22 = HOMESTEAD 23 = POMPANO BEACH 24 = INDIANTOWN 25 = HYPOLUXO 26 = BIG CYPRESS 27 = EVERGLADES 28 = HIALEAH 29 = LAKE PLACID 30 = MERRIT ISLAND ``` 31 = VERO BEACH ``` LOS = Level of Service (leave blank) STS = Status 01 = Existing 02 = Proposed 03 = Stand By/Backup 04 = To Be Plugged DPTH CODE = Datum for Elevations 01 = NGVD 02 = Land Surface PMPINT = Depth to Pump Intake (Wells Only) PUMP TYPE 01 = Centrifical (suction) 02 = Lift (turbine, jet, submersible) 03 = Unknown PUMP CAP. = Capacity in GPM (SW & GW Facilities) 01 = Unknown. MTR? = Is use Metered by Volume or Power Consumption and Reported to the District? Y = Yes N = No YPLNR = North Planar Coordinate ``` XPLNR = East Planar Coordinate | | 168 0,85 | 1240 0.50
840 0.50 | 897 0.50 | 177 0.85
82 0.50 | |--|--|---|---|-------------------------------------| | | 15 | 26 | ٦
چ | 1
1
2
1 | | | 3.5 | ဖ ဖ
၏ က | 3.6 | 1.5 | | , | 13 | 01 | 20 | 13 | | GW 03
GW 03 | NA BRANCH GROVES) GW 05 GW 04 SW SW | AS, INC. GW GW GW GW GW GW GW GW SW SW | GW 03
GW 03
GW 03 | Y
 GW 04 | | 782772
785686
785686
0
0
181966
777043
777339
777339
777339
777584
777584
777584
777584
77758
77758
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77763
77 | (BANNANA
865125 GW
864125 GW
863950 SW
860500 SW | THOMAS
THOMAS
G
G
G
G
G
G
G
G
G
G
G
G
G | DAVIS | MURRA
874349 | | 453062
448174
46344
0
0
427495
427495
421899
431214
431805
448616
452021
452021
452021
452021
452021
453041
452024
452021
452021
452021
452021
452021
452021
452021
452021
452021
452021 | BOB_PAUL
333625.
333000
332650
335150 | RFYNOLDS | J. S. W. | OLIVER T.
340272 | | X X X X X X X X X X X X X X X X X X X | 2 2
800 N
323 N
625 N
625 N | 0 0 % | 4
175 N
175 N
175 N
175 N | Y Y Y N 2008 | | 606666666666666666666666666666666666666 | BOTH
02
02 | BOTE | 3 9 | во:н | | | 26 10/87 AG
00 300
62 126 | 26 1/77 AG | 26 7/77 AG
70 S4
70 S0
70 S2
70 S2 | 26 2/88 AG
32 60 | | | .948 01 10.00 5 10.00 1 | | 8 8 8 8
00 00 0
8 8 8 8 | 1.46 01
6.00 02 : | | 1992 011
1992 011 199 | 03
153 01
153 01
153 01 | 03
1004
1004
1004
1004
1004
1004 | 03
194 01
194 01
194 01 | 354 01 | | 2600020-3
2600020-3
2600020-4
2600020-5
2600020-1
2600020-1
2600020-1
2600020-1
2600020-1
2600020-1
2600020-1
2600020-1
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2
2600020-2 | 2600022 77.27
. 2600022-1
. 2600022-8
. 2600022-5W | 2600023 1000.29 2600023 2600023- | 2600029 390.99
2600029-
260029-
260029-
260029- | 2600031 146.7
2600031 2600031-36 | | | | 40 0.50 | 80 0.85 | 80 0.85 | 57 0.85 | 10880 0.50 | 216 0.50 | 24 0.5 | 100 0.85 | 585 0.50 | 143 0.50 | 25 0.50 | 5 0.50 | | 40 0.50 | |---|--------------------------|--------------------|--------------------|--------------------|----------------------------|--|----------|-------------------------|---|---|---------------------|--------------------------|-------------|---|-----------------| | | | 15 | 15 | 13 | 15 | 26 1
RING ONLY
IG AT RATE
NEW CANAL | 26 | 26 | 15 | . 15 | 26 | 26 | 3.5 | 0 | 15 | | | | 3.6 | 0.8 | 8.0 | 1.5 | 0.8
WATE
ERIN
OF | 3.6 | | 1.5 | 8.0 | 0.8 | 3.6 | ښ.
دی بر | | 8.0 | | WINDMILL. | | 20 | 13 | 13 | 13 | 20
USED FOR STOCK
I INCLUDES DEWA
LOW CONSTRUCTIO | 20 | | 13 | 50 | 61 | 20 | 1.0 | N n | 20 | | | | | | | | | | | | | | | | | • | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 0.1 | 01 | 0.1 | 0.5 | ATION
03
03
03 | | 03 | 0 4 0 4 | 00000 | 03 | 03 | | 03
03
01
01 | | | 873800 GW
873297 GW
873323 GW
871656 GW
870782 GW | | REID
877000 GW | INC.
860000 GW | INC.
860000 GW | YAYA
868120 GW | GAR CORPORA
736637 GW
757717 GW
747293 GW | DGEDILL | 873358 CW
876954 SW | ARMS
883950 GW
882722 GW
881700 SW | 802768 GW
801455 GW
801384 GW
804008 GW
803930 GW | AGE
 820342 GW | McLENDON
17 871952 GW | CHARLTON | 795161 GW
794598 GW
794724 GW
795975 GW | DUNAWAY | | 341087
339786
341051
340968
341063 | 339794
339718 | CHARLES
502800 | McCLURGS
391700 | McCLURGS
391700 | D. UPADHYAYA
334634 868 | 530801 7 530801 7 530808 7 530808 7 | M. E. RI | 531508
526562 | 1 BOWMAN FA
346300
346278
346600 | E. C. MI
517187
518190
520636
520765 | B. F. PAC
516604 | C. L. Mcl
533117 | JOHN F. | 366793
365417
368076
366832
366302 | R. D. DUN | | 500 N
N
170 N
200 N | | Z
H | 1
700 N | Z
C | 1 N
640 N | 3 Y
192
192
101 | 1 Y | 009 | 2
90 N
90 N
300 N | 450 N
450 N
450 N
450 N
50 N | L
Z | 1
800 N | 2 | 500 N
500 N
200 N
150 N
150 N | 2 | | | | В | S. | ₹ | ₹ | вотн | BOTH | | вотн | . % | M. | MS | ĞΨ | | 3 3
U | | 60
10
110
100 | 12 | 6/87 AG | 1/17 AG | 7/77 AG | 6/86 AG
300 | 1/82 AG
40
30
30 | DA LLI | | 6/87 AG | 50 %G | 4/87 AG | A LL | 10/87 AG | | AG CL/L | | 112
11
20
200
400 | 140 | 30 | 26 | 26 | 26
500 | 26
60
50
50 | 26 | | 26
150
150 | 26
110
110
110
110 | 26 / | . 92 | 26 | 58
58
26
30 | 56 | | | | 5.47 02
6.00 02 | 6.00 02 | 6.00 02 | .323 01
10.00 02 | 2440.00 02
6.00 02
6.00 02
6.00 02 | | 0.2 | .564 01
6.00 02
6.00 02 | 103.62 02
9.00 02
8.00 02
8.00 02
8.00 02
8.00 02 | 19.44 02
8.00 02 | 6.00 02 | 5.68 02 | 6.00 02
6.00 02
4.00 02
3.00 02 | | | 154 01
154 01
154 03
154 01 | 54 | 03
158 01 | 03
155 01 | 03
155 01 | 03
153 01 | 03
209 01
194 01
194 03 | 03 | 158 01
158 01 | 03
135 01
135 01
135 01 | 03
176 01
176 01
176 01
176 01 | 03
176 01 | 03
158 01 | 03 | 172 01
172 01
172 01
172 01
172 01 | 60 | | 2600031-37
2600031-38
2600031-39
2600031-40 | 2600031-42
2600031-sw | 28.41
2600032- | 28.19
2600035- | 25.19
2600036- | 26.36
2600037-3 | 5017.76
2600041-12
2600041-60
2600041-61
SW | 503.41 | 2600042-1
2600042-SW | 46.00
2600046-1
2600046-2
2600046-SW | 661.94
2600047-2
2600047-3
2600047-4
2600047-5
2600047-5 | 194.8
2600048-7 | 10.85
2600050-2 | 29.36 | 2600052-1
2600052-2
2600052-3
2600052-4
2600052-5 | 8.80 | | | | 2600032 | 2600035 | 2600036 | 2600037 | 145 | 2600042 | | 2600046 | 2600047 | 2600048 | 2600050 | 2600052 | | 2600053 | | | 460 0.50 | 153 0.85 | 155 0.50 | 20 0.50 | 65 0.85 | 40 0.50 | 320 0.50 | 30 0.85 | 80 0.85 | 2400 0.50 | |---------|---|---|---|--|--------------------|---------------------|---|--|---|--| | | 5 6 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 26 | | | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 | 1.5 | ت.
ت | 0,8 | 8.0 | | | 20 | 13 | 20 | 20 | 13 | 20 | 50 | 13 | 133 | 90 | | | | | | | , | | | CARLDEN
1
4 | · | | | 01 | 01
05
03 | 7E
01
01
01 | 01 | 01
01 | 04 | 0.1 | 04
04
01
01 | E. C.A
01
04 | 01
04
04 | | | 04185 | 803721 GW
W. WARD
764902 GW
763392 GW
763448 GW | BNDEAL GROVI
880241 GW
880247 GW
880233 GW
880513 GW
881155 GW | A RANCH
834 804624 GW
708 806053 GW | CRAWFORD
866245 GW
866079 GW
867252 GW | 884200 GW | OOSLEY
874756 GW | BANNON
851100 GW
849003 GW
848229 GW
847445 GW
846350 GW | IN OR ALEX I
878389 GW
878842 GW | HANSEN
863203 GW
863768 GW
864004 GW | INC. GW | | 52 | 353705
CHARLES
511253
512447
513685 | 1 DUDA - G
373064
373657
374329
375151
375106 | FELDA RA
354834
354708 | RAYMOND
370874
372368
372369 | SIX L'S
330200 | W. G. WC
356771 | PAUL O'E
370436
371336
371118
370861 | G. AUSTI
337241
337033 | WESLEY F
365197
367017
365172 | ASPRING, | | | 600 N
800 N
900 N | 5 500 N
500 N
500 N
500 N
500 N
500 N | 2
600 N
600 N | 3
700 N
400 N
700 N | z | 4
1050 N | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | 2
333 N
400 N | 3
500 N
500 N
500 N | X X X X X X X X X X X X X X X X X X X | | | %
O | вотн | СМ | M | W.C | οw | % | M.O. | M O | 3
3 | | | 77 AG | 37 AG
327 AG
334
334
334 | 7 AG | 87 AG | 17 AG
00 | 17 AG | 77 AG | 77 AG | 77 AG
20
100
150 | 88 AG | | en
m | 33
26 7/7
50
90 | 26 8/8
27
34
34
34 | 26 7/7
33
33 | 26 11/47 | 26 6/8
42 1 | 26 8/8
34 | 26 7/7 50
50
50
50
30 | 26 7/7
20
40 | 26 7/7
60
50 1
00 1 | 26 10 / 99 99 99 99 99 99 99 99 99 99 99 99 9 | | | 02
02
02
19
02
20 | 005500 | ((()) | | 22 | | 7777 | 2 2 1 | 22 26 | | | 00 | 000 | 8.
0.00.
0.00.
0.00.
0.00. | 6.00 | .123 01
6.00 02
4.00 02
6.00 02 | .367 0 | .246 01
6.00 02 |
60000.8
00000.8
000000000000000000000000 | 4.00 0 | 0.00.9 | 80.6
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02 | | _ | 172 01
03
194 01
194 01
194 01 | 03
135 01
135 03
135 01
135 01
135 01 | 03
172 01
172 01 | 03
154 01
154 01
154 01 | 03
134 01 | 03
154 01 | 03
154 01
154 01
154 03
154 03 | 03
154 01
135 01 | 03
154 01
154 01
154 01 | 0.3
176 01
176 01
176 01
176 01
176 01
176 01
176 01 | | | 2600053
373.73
2600054
2600054 | 22.49
2600055-4
2600055-5
2600055-6
2600055-7
2600055-8 | 33,56
2600056-8
2600056-9 | 2600057-1
2600057-1
2600057-2
2600057-3 | 29,90
2600059-1 | 40.24
2600061-4 | 69.40
2600065-6
2600065-7
2600065-8
2600065-9
2600065-10 | . 16.09
2600066-5
2600066-9 | 2600067-11
2600067-12
2600067-13 | 967.25
260068-
260068-
260068-
260068-
260068-
260068-
260068-
260068-
260068-
260068- | | | 2600054 | 2600055 | 2600056 | 146 | 2600059 | 2600061 | 2600065 | 2600066 | 260067 | 2 6000 68 | • | 350 0.50 | 2268 0.50 | 269 0.50 | 1240 0.50 | 2750 0.85 | |--|---|--|--|--| | 26 | | 15 | 26 | 5 6 | | 0.8 | 8.
0 | 8.
C | 0.8 | 8.0 | | 20 | 20 | 13 | 01 | 13 | | E. C. MILLS
485966 792267 GW 03
487153 789469 GW 03
485988 791188 GW 03
486061 793976 GW 03
487176 794049 GW 03 | E. C. MILLIS
479995 785325 GW 03
478576 785490 GW 03
476313 785445 GW 03
473456 785400 GW 03
473456 785470 GW 03
479090 783577 GW 03
476488 781522 GW 03
476488 781531 GW 03
476492 781832 GW 03
476405 779924 GW 03
476405 779916 GW 03
476405 779916 GW 03
476405 779916 GW 03
476405 7788050 GW 03
476405 788050 03 | ALICO
359340 870459 GW 01
359507 869557 GW 01
360398 870318 GW 01
361210 870366 GW 08
361231 870139 GW 08
361335 869308 GW 01
361674 869885 GW 01 | 1 JOE HILLIARD
517263 815638 GW 03
519188 809442 GW 03
522150 805500 SW | USSC - DEVILS GARDEN CITRUS SOUTH 459385 772097 CW 03 463070 772171 GW 03 464240 772082 GW 03 459312 770328 GW 03 459400 768039 GW 03 453400 768039 GW 03 463045 765436 GW 03 463965 765436 GW 03 462860 763519 GW 03 464226 763519 GW 03 461402 762607 GW 03 4600606 770331 GW 03 | | \$ 2 2 2 Z Z G | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8
750 N
750 N
1200 N
900 N
100 N
100 N
900 N | 2
600 N
600 N
10000 N | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | M.
G | M G M | GW | вотн | W. C. | | A G | 9 4 | AG | A G | 9 | | 6/87 | 50 20 | 8/87 | 18/9 | 4/88
70
70
70
70
70
70
70
70
70
70
70
70
70 | | 26
109
100
100
100 | 26
11000
11000
11000
11000
11000
11000
11000
11000 | 26
60
60
60
1000
60 | 26
110
150 | 26
120
120
120
120
120
120
120
120 | | 43.20 02
6.00 02
9.00 02
8.00 02
8.00 02 | 43.20
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00 | 1.51 01
8.00 02
8.00 02
10.00 02
8.00 02
4.00 02
8.00 02
8.00 02 | 267.74 02
6.00 02
6.00 02 | 465.54 02
16.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02 | | 03
175 03
175 03
175 01
175 01 | 193 01
193 01
193 01
193 01
193 01
193 01
193 01
193 01
175 01
175 01
175 01
175 01 | 154 01
154 01
154 01
154 01
154 01
154 01
154 01 | 03
176 01
176 01
176 01 | 03
193 04
193 04
193 04
193 04
193 04
193 04
193 04
193 04
193 04 | | 9 354.13
2600069-1
2600069-2
2600069-3
2600069-4
2600069-4 |
2600070-1
2600070-2
2600070-3
2600070-4
2600070-5
2600070-6
2600070-1
2600070-1
2600070-1
2600070-1
2600070-1
2600070-1
2600070-1
2600070-1
2600070-1
2600070-1
2600070-1 | 2600071-14
2600071-15
2600071-15
2600071-127
2600071-129
2600071-130
2600071-131 | 2 1849.60
2600072-8
2600072-9
2600072-SW | 3 1264.87
2600073-13
2600073-14
2600073-15
2600073-16
2600073-17
2600073-19
2600073-20
2600073-21
2600073-23
2600073-23 | | 2600069 | 147 | 2600071 | 2600072 | 2600073 | | | 15 | 15 | |--|--|-------------------------| | | 8.0 | 8.0 | | | 20 | 61 | | | | | | | | | | | | | | | | | | | 003 | 01 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | % % %
& & & | WORLD
0 GW
8 GW | | 224
237
237
248
258
258
258
258
258
258
258
25 | ND
361
313
323 | At 1 | | 117199666967777777777777777777777777777 | COWNSEND
8 801361
8 801313
8 801323 | PLANT
87648
87349 | | 888997788179899999999999999999999999999 | . TOI
476
743
482 | 3.1.E | | $\begin{array}{c} 4444446444444444444444444444444444444$ | 357
357
355
356 | JABEJ
3507
349 | | 222222222222222222 | 222 | _
22 | | | 3
200 1
200 1
250 1 | 500 | | | | 1 | | | GW
01
01 | .₩.C | | | AG | AG | | $\begin{smallmatrix} & & & & & & & & & & & & & & & & & & &$ | 787
40
40
40
40 | /83 | | 00000000000000000000000000000000000000 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 26 J
00 C
45 | | | 2222 | 64 (V (V | | | 0 000 | 0 00 | | | 1.72
3.
3. | 02
6.
6. | | | one e e | w | | | 27
20
27
20
27
20
20 | 0 4 | | | | T) T) | | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ | 0 | -16 | | 600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073-
600073- | 86
0075
0075 | 00
00 /8:
00 /8: | | 22 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 63.
260
260
260 | 73.
260
260 | | 148 | 600075 | .00078 | | 140 | 260 | 260 | | | | | 63 0.50 40 0.50 | | ა
ა | 20 | | Q. | C 0 | |----------------------|---|---|--|---|--| | | 43 0.8 | 0 06 | | . 0 | 0 0 0 .5 | | | 2 | 5.2.0 | | 3.3 | 00
00
00 | | | ب
بی | 15 | | 56 | 9 2 9 2 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | 8.0 | 8.0 | | æ . | 8 8 | | | 13 | 50 | | 61 | | | | | | | | 25 | | | | | | | | | | | | | | | | 01 | 01
03
04 | 01
01
01
01
01
01
01 | | | | | 85 GW
54 GW | 00 GW
00 GW
00 GW | 35 GW
37 GW
37 GW
37 GW
37 GW
37 GW
39 GW
39 GW
31 GW
31 GW
31 GW
32 GW
33 GW
34 GW
37 GW
37 GW
38 GW | | 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 66 GW | | 87508
87505 | RAWLS
806400
806400
806400
806400 | 859635
861630
853887
853907
861764
861764
857006
861719
861719
856985
856985
856985
856554 | 85654
85653
85151
84162
84156 | (ANCH
772697778078
778078
778078
778097
778047
778047
782406 | 767676
768936
770444
771349
777635
777470
775470
775454 | | 49996
50213 | WAYNE
54900
54900
54900
54900 | 1. J. FLL
365431
365028
365068
362354
372524
372524
372524
372522
3736916
376401
376401
377377 | 1780
3371
0174
1881
0586
6278 | (OOKS R. 159457 159907 159907 159364 161595 162786 165273 164992 164886 168885 168311 | CKES
107085
107203
106926
107998
107609
107609
110997
110207 | | m m | LAWA
354
354
354 | | | 0.000000000000000000000000000000000000 | 1 LYKE
507
507
507
507
507
507
507
510
511
512 | | 240
240 | 000
000
000
000
000 | N N N N N N N N N N N N N N N N N N N | N N N N N N N N N N N N N N N N N N N | 11
000
100
200
000 | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | | 3 | | - | 44 44 4 | BOTH 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | AG GW | AG GW | | AG GW | | | | 20 | /85 / 15 / 15 / 15 / 15 / 15 / 15 / 15 / | 15
15
15
15 | 4 C C C C C C C C C C C C C C C C C C C | 88 AG | | 65 | 26 3/
30
80
80
60 | 26 27
330
330
330
330
330
330
330
330 | | 26 12
80
80
80
80
80
80
80
80 | 26 8/8
00
00
00
00
00
00
00
00
00 | | 02 | 02
02
02
02 | 000000000000000000000000000000000000000 | | 0002 | | | 6.00 | 6.00
6.00
6.00
8.00 | | 000000 | 000000000000000000000000000000000000000 | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | | == | | | <i></i> | 0 | . • • • • • • • • • • • • • • • • • • • | | 54 01
54 01 | 03
72 01
72 01
72 01
72 01 | 00000000000000000000000000000000000000 | T T T 10 10 10 | 03333333333333333333333333333333333333 | 03
4 01
4 01
4 01
6 01
6 01
7 01
7 01
7 01 | | 00 | | တတ္တတ်တ်တ်တ်တ်တ်တ်တ်တိတ်တိတ်
ဗေဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗဗ | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 78-11 | 79-
79-
79- | 88 88 80 0 1 1 8 8 8 8 8 8 8 9 1 8 8 8 9 1 8 8 8 9 1 8 8 8 9 1 8 8 9 1 8 8 9 9 1 8 8 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9 9 1 8 9
1 8 9 1 8 |)-1
-2
-2
-2 | 7
83-49
83-50
83-51
83-52
83-53
83-53
83-54
83-55
83-55
83-55 | 0
5-116
5-117
5-117
5-119
5-120
5-123
5-125 | | 2600078-
2600078- | 33.56
2600079
2600079
2600079
2600079 | 433.68
260008
260008
260008
260008
260008
260008
260008
260008
260008
260008
260008
260008
260008
260008 | 260008
260008
260008
260008 | 260008
260008
260008
260008
260008
260008
260008
260008
260008 | 3631.2
260008
260008
260008
260008
260008
260008
260008
260008 | | | 600079 | 080 | 49 | 600083 | 600085
600085
22
22
22
22
22
22
22
22
22
22
22
22
22 | | | 56 | 2 9 | | 26(| 260 | | 88 60
0 0 3
0 0 3 | SR. | 03 | 03 | | 03 | 03 | ° 60
03
03
04 | 03 | 5 6 | 93 | 03 | 60 | 03 | 03 | 03 | e 0 | 03 | 03 | F C | 03 | 03 | 03 | 03 | 03 | e e | 03 | 03 | 500 | 0 0 | 03 | 03 | 200 | 03 | 03 | 03 | E 0 | າ ຄ
ດ | 03 | |--|-------------------------------|------------------|----------|---------------|----------|------------|------------------------|----------|------------|----------|------------|-------------|-------------|-------------|-------------|----------------------------|-------------|-------------|----------------------------|-------------|----------------|---------------|-----------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-----------|---------------|----------|-------------|----------|------------|-----------------|-----------| | SW WW | EL, | 35 S | 35 | 3 <u>5</u> 33 | <u> </u> | 3 3 | 5 E | ₹ | 3 3 | | 3 5 | 3 3 | . <u></u> | S. | ŒΣ | 35 35
U | <u>35</u> | 3€ (| ¥ 3 | <u>X</u> | 3€
0 | 35 3
(5 () | 35 | СW | 32 33 | ĊΚ | <u> 3</u> | 3 3
U U | X | SE
SE | M S | x 3 | <u> </u> | S. | % | 3 3
0 0 | <u>د</u>
ن د | <u>*</u> | | 777622
777536
778037
778418 | . McDANIEL, | 741836
741854 | · (2) | 737909 | 740997 | 738397 | 3479 | 733869 | 732906 | 733324 | 742750 | 761861 | 758735 | 6162 | 6168 | 761735 | 6029 | 760212 | 758853 | 759005 | 754152 | 753861 | 757014 | 755602 | 755078 | 753821 | 752521 | 751258 | 748844 | 749234 | 750116 | 751342 | 760715 | 10 | 760036 | 757313 | 760654 | 757520 | | 511271
509507
510401
511115 | ROBERT E | 484278 | 9969 | 499041 | 9.0 | 60 | 9415 | 493805 | 494605 | 99999 | 0866 | 497464 | 0002 | 9148 | 9250 | 493369 | 491527 | 493372 | 494397 | 9565 | 499825 | 498574 | 495509 | 494366 | 494942 | 493438 | 492147 | 498150 | 9567 | 9470 | 9453 | 494606 | 9068 | 834 | 8389 | 485302 | 2 00 | 477025 | | 700 N
500 N
700 N
500 N | 101 | 009 N | 0 | 800 N | | 2009 N | | | N 009 | | | 009 N | | | | N 009 | | | N N | | | 000 N | | | Z Z
0009 | _ | | N 009 | | | о · | Z 2 | | | | Z Z
009 |
 | | | | M.O. | | | | | | | | | | | | | | | | | - | AG | 3/88 | 90 | 09 | 60 | 09 | 09 | 09 | 09 | 9 9 | 09 | 9 | 09 | 09 | 09 | 09 | 09 | 9 | 60 | 200 | 09 | 09 | 0 0 | 09 | 09 | 9 6 | 09 | 09 | 0 0 | 09 | 09 | 60 | 0 0 | 90 | 60 | 60 | 09 | 09 | 60 | | 100 | 26 | 100 | 000 | 000 | 00! | 100 | 001 | 000 | 100 | | 02 02 02 02 | 02 | 02 | 0.2 | 0.5 | 02 | 02 | 02 | 0.2 | 200 | 20 | 0.2 | 02 | 0.0 | 0.5 | 0.5 | 02 | 0.2 | 02 | 200 | 02 | 0.2 | 02 | 0.2 | 0.2 | 200 | 0.2 | 0.5 | 2 0 | 0.0 | 0.2 | 02 | 200 | y 0 | 0.0 | 0.2 | 0.5 | 200 | 0.5 | | 8
6.00
8
6.00
6.00 | 1480.00 | 6.00 | 6.00 | 6.00 | | 6.00 | | | 00.9 | 6.00 | | 6.00 | 6.00 | | | 00.9 | | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 | 9 | 6.00 | 6.00 | 6.00 | 00'9 | 6.00 | 6.00 | | 9.00 | | 00.9 | | 00.00 | | 011001 | | 03 | 0.1 | 01 | 01 | 0.1 | 01 | 01 | 10 | 010 | 01 | 01 | 01 | 01 | 01 | 01 | 0.1 | 10 | 100 | 0.0 | 0.1 | 01 | 01 | 0.1 | 0.0 | 0.1 | 01 | 01 | 10 | 0.1 | 01 | 36 | 10 | 10 | 0.1 | 100 | 100 | 55 | | 194
194
194
194 | | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 208 | 193 | 193 | 193 | 193 | E 61 | 193 | 193 | | 193 | 193 | 193 | 193 | 193 | 193 | 193 | 193 | E 0 | 193 | 193 | 193 | ئىر د
وي و | 193 | | | 193 | | 193 | | 2600085-127
2600085-128
2600085-129
2600085-130
2600085-3W | | 2600087-32 | 600087-3 | 60008 | 600087-3 | 60009 | 600087-4 | 600087-4 | 2600087-42 | P-/80009 | 600087 | 2600087-110 | 2600087-111 | 2600087-113 | 2600087-114 | 2600087-115
2600087-116 | 2600087-117 | 2600087-118 | 2600087-119
2600087-120 | 2600087-121 | 2600087-122 | 2600087-123 | 600087-12 | 2600087-126 | 2600087-127 | 2600087-129 | 2600087-130 | 2600087-131 | 2600087-133 | 2600087-134 | 600087-13 | 2600087-136 | 600087-1 | 2600087-139 | 600087-1 | 600087-14 | 2600087-142 | 600087-14 | | | 2600087
2600087
2600087 | | | | | - | | | | | | | 1! | 50 | 3480 0.85 1000 0.50 3164 0.50 26 26 | | | 09.0 028 | 800 0.50 | |--|--|---|----------------| | | | 56 | 56 | | | | 8. | 8.0 | | | | 20 | 20 | | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 03
03
03
03
03 | 23
23
23 | | | 06 GW 881 GW 882 GW 883 884 888 GW 884 | | 44 GW
21 GW
90 GW | | |
756906
756036
755496
753662
753662
753662
752188
76794
752130
747831
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
742133
752133
753131
753168
753168 | | ₹ | RANCH | | 478830
4760635
475555
477474
481377
481252
481252
481252
481252
481252
481252
481252
481252
481252
483403
487373
487373
487303
487303
487303
487303
487303
487303
487303
505559
505559
505559
505559
505559
505559 | 500081
500169
502351
504595
504783
503215
504405 | 505546
S. C. FRY
484255
484342 | CROOKS F | | | | z zz | | | | 009 | 2
1200
1200 | | | | <i>•••••••••••••••••••••••••••••••••••••</i> | AG GW 2
1200
1200 | AG GW 2 | | | <i>•••••••••••••••••••••••••••••••••••••</i> | AG GW 2
1200
1200 | M.S | | 100 60 60 100 60 60 100 60 60 60 60 60 60 60 60 60 60 60 60 6 | 100 60 60 60 100 60 100 60 60 100 60 60 100 60 100 60 100 60 60 60 60 60 60 60 60 60 60 60 60 6 | 100 60 600 600 26 7/87 AG GW 2 1200 1200 1200 | 1/77 AG GW | | .00 02 100 60 00 02 100 00 00 02 100 00 00 02 100 00 00 02 100 00 00 00 02 100 00 00 00 02 100 00 00 00 02 100 00 00 00 02 100 00 00 00 02 100 00 00 00 00 00 00 00 00 00 00 00 00 | 00 02 100 60 60 60 60 60 60 00 02 100 60 60 60 60 60 60 60 60 60 60 60 60 6 | .00 02 100 60 600
8 02 2 6 7/87 AG GW 2
.00 02 120
.00 02 120 | 6 11/77 AG GW | | 01 6.00 02 100 60 60 60 60 60 60 60 60 60 60 60 60 6 | 94 01 6.00 02 100 60 60 94 01 6.00 02 100 60 60 94 01 6.00 02 100 60 60 94 01 6.00 02 100 60 60 94 01 6.00 02 100 60 60 60 90 01 6.00 02 100 60 60 60 60 90 01 6.00 02 100 60 60 60 60 60 60 60 60 60 60 60 60 6 | 03 57.18 02 26 7/87 AG GW 2 08 01 8.00 02 120 1200 08 01 8.00 02 120 1200 | 6 11/77 AG GW | | 77-145 193 01 6.00 02 100 60 77-146 193 01 6.00 02 100 60 77-148 193 01 6.00 02 100 60 77-149 193 01 6.00 02 100 60 77-151 193 01 6.00 02 100 60 77-152 193 01 6.00 02 100 60 77-152 193 01 6.00 02 100 60 77-153 193 01 6.00 02 100 60 77-154 193 01 6.00 02 100 60 77-156 193 01 6.00 02 100 60 77-157 193 01 6.00 02 100 60 77-164 193 01 6.00 02 100 60 7-165 | 600087-111 194 01 6.00 02 100 60 60 60 600087-112 194 01 6.00 02 100 60 60 60 60 60 60 60 60 60 60 60 60 6 | 600088-29 208 01 8.00 02 100 60 600 600 600 600 600 600 600 600 600 | 26 11/77 AG GW | | | 300 0.85 | | |------------------------------|---|--| | | 133 | | | | 9 | | | | œ | | | | | | | 770186 GM 03
773205 GW 03 | SOUTHERN DIVI
761263 GW
761265 GW
761564 GW
761656 GW
758719 GW
758701 GW
758701 GW
758701 GW
758702 GW
758702 GW
75706 GW | 753466 GW 03
751146 GW 03
751150 GW 03
748130 GW 03
748130 GW 03
748136 GW 03
748136 GW 03
745437 GW 03
745516 GW 03
742972 GW 03
742972 GW 03
742973 GW 03
742973 GW 03
74295 03
74246 GW 03
745495 GW 03
745495 GW 03
745495 GW 03
745495 GW 03
745495 GW 03
745495 GW 03
745846 GW 03
740662 GW 03 | | 420125
423937 | USSC – 508861 518125 513128 513128 513128 513128 513128 513128 51315 51054 510727 510727 510727 510727 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 510812 | 507965
507965
5108249
512456
511053
511053
511053
511053
511053
511053
511053
511053
511053
511053
511053
511053
511069
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869
5110869 | | ZZ | 22 | 4 4 5 0 4 5 0 6 5 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | GW GW | | | 50 | 787 AG | 000000000000000000000000000000000000000 | | 80 | 2 | 000000000 | | 00 02
00 02 | 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0 | | | 9.9 |
2230
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
1 | | | | 94 01 10.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000000000000000000000000000000 | | 92 01 6.
92 01 6. | 117.37
600094-17
600094-19
600094-19
600094-20
600094-20
600094-21
194 01
10.00
600094-21
194 01
8.00
600094-23
194 01
8.00
600094-23
194 01
8.00
600094-23
194 01
10.00
600094-23
194 01
10.00
600094-29
194 01
10.00
600094-31
194 01
19.00
600094-31
194 01
19.00
600094-31
194 01
19.00
600094-31
194 01
19.00
600094-32
194 01
19.00
600094-32
194 01
19.00
600094-33
194 01
19.00
600094-34
194 01
19.00
600094-34 | 4-38 | ``` SΣ 3 35 S S S S S S 3 S S SE M O M S Σ S S S 740//6 737182 737135 738146 738309 735062 732513 740787 740846 737448 737467 735000 735137 732578 729346 726912 726941 729667 729802 727571 727487 729741 727383 727303 727331 729679 727520 727364 724660 721608 721532 737692 737758 731854 732081 732008 729125 726995 726964 729330 729761 729859 721885 721898 724850 732513 732483 735214 726958 734911 734881 732551 729048 724872 517157 517376 515228 512199 509147 508147 508853 518880 520745 521928 52 512234 508556 511367 5114622 516938 512757 512756 51394 519230 521862 523238 526496 524852 526598 529694 527593 523236 525681 527665 531274 530984 513860 513927 516630 519093 521784 519053 521552 522783 524745 532710 509155 0.00 0.00 0.00 00.00 00.0 00.0 0.00 0.00 00 0.00 0.00 0.00 0.00 10.00 10.00 10.00 10.00 00 2600094-7 2600094-8 2600094-10 2600094-11 2600094-11 2600094-13 2600094-13 2600094-22 2600094-22 2600094-23 2600094-29 2600094-29 2600094-29 2600094-29 2600094-37 2600094-37 2600094-35 2600094-37 2600094-37 2600094-37 2600094-37 2600094-49 2600094-50 2600094-51 2600094-53 2600094-54 2600094-55 2600094-56 2600094-57 2600094-56 2600094-61 2600094-62 2600094-63 2600094-64 2600094-65 2600094-40 2600094-41 2600094-45 2600094-46 2600094-43 2600094-44 2600094-59 2600094-60 2600094-5 2600094-6 600094-47 600094-48 600094-42 ``` | | 13 | 20 | 50 | |--|---|--|--| | | | | | | | | | | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 08
03 | 01
01 | | | M M M M M M M M M M M M M M M M M M M | SW CSW | GW
GW | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 724886
724926
721550
721518
721651
724868 | LLS
878630
878339
877862
877500 | ARBE
8406
8279
8293 | 802369
805438
806152
810852
811730
821350
826170
821350
812689
812693
812034
812034
812035
812035
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957
801957 | | 525509
528044
523316
525701
528127
530959
533155 | . C. MI
332626
332991
333012
332350 | SANK
51053
50890
50669 | 496751
496751
496751
496751
496751
496753
496238
490043
493036
492746
492746
491188
49132
491436
491436
491436
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543
481543 | | | <u>ы</u> | (h
 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ | | 450
450
450
450
450
450 | 3
50 N
250 N
250 N | ייים אי | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | BOTH
01
01 | ₩
S | <u>*</u> | | | AG | AG | AG A | | | 6/87
20
20 | 10/87
20
20
20
20 | 88/88 | | 120
120
120
120
120
120
120 | 26
700
60
60 | 26
50
50
50 | $\begin{array}{c} L \\ $ | | 000000000000000000000000000000000000000 | 01
02
02 | 02 02 02 02 | 00000000000000000000000000000000000000 | | 10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | .361
6.00
8.00
8.00 | 53.61
8.00
8.00
8.00 | 276.60
6.00
6.00
6.00
6.00
6.00
6.00
6.00 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 03
01
03 | 000000000000000000000000000000000000000 | | 2009
2009
2009
2009
2009
2009 | 153
153 | ი დითი | 11 | | 2600094-67
2600094-68
2600094-69
2600094-70
2600094-71
2600094-73
2600094-75 | 473.00 | 2600093-5W
303.54
2600098-57
2600098-58
2600098-59 | 15532 2600108-14 2600108-15 2600108-16 2600108-18 2600108-19 2600108-21 2600108-22 2600108-23 2600108-24 2600108-25 2600108-25 2600108-32 2600108-32 2600108-32 2600108-32 2600108-35 2600108-37 2600108-35 2600108-35 2600108-35 2600108-35 2600108-35 2600108-36 2600108-37 2600108-37 2600108-37 2600108-37 2600108-37 2600108-37 2600108-37 2600108-37 2600108-37 2600108-40 2600108-40 | | | 2600095 | 2600098 | 800
154 | 26 0.75 20 0.50 15 320 0.50 26 0.8 23200 0.50 15 8.0 ``` 803704 805025 805025 806632 806838 819072 789761 793091 795354 795354 795354 795354 795354 795354 802057 802057 800505 800505 814526 817696 818004 822133 796457 801661 817753 8113635 813849 818389 818389 799141 (811266 (800268 (801416 (802132 808527 800972 804761 807866 807864 814456 795660 794663 795389 804443 805584 794403 796851 796419 97811 480626 478719 477748 475823 475897 475897 475865 475965 477698 471954 470796 469812 473263 473263 473263 472509 472509 472588 470288 470288 470536 469317 469317 469317 469317 467362 467362 4679592 467992 467992 467992 467993 467993 467993 467993 467993 467993 467993 449582 451170 450107 450805 450381 444994 446827 442745 443107 442696 441362 2600108-49 2600108-50 2600108-51 2600108-52 2600108-53 2600108-54 2600108-55 2600108-56 2600108-59 2600108-60 2600108-60 2600108-60 2600108-60 2600108-60 2600108-63 2600108-64 2600108-65 2600108-67 2600108-70 2600108-71 2600108-71 2600108-71 2600108-73 2600108-74 2600108-74 2600108-74 2600108-74 2600108-74 2600108-75 2600108-76 ``` | | .50 | .50 | 50 | |---|---------------------------------------|---------------------|--| | | 612 0 | 587 0 | 3164 0 3164 0 | | | 26 | 26 | 2 | | | 8.0 | 3.6 | ∞ &
••• | | | 61 | 20 | 56 | | | | | | | | CORPORATION
03
03 | | E− | | | | | 1RU S1 03 03 03 03 03 03 03 03 03 03 03 03 03 | | 799 GW 791 GW 793 GW 799 GW 799 GW 799 GW 791 79 | DEVELOPMENT
759036 GW
759923 GW | EYNOLDS
0730 GW | ER III
1199 GW
3302 GW
680 GW
675 GW
6675 GW
6627 GW
6627 GW
6627 GW
6627 GW
6627 GW
6637 GW
6637 GW | |
80037
80037
800000
81000
81154
81110
8009
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187
80187 | DEVEL
7590
7599 | 830 | 0LLI
757
751
751
728
728
725
725
725 | | 441841
4401307
420307
422030
424383
418369
418369
418300
420772
420734
458708
459151
413494
413494
413494
413573
406601
4095239
405239
405239
405239
405239
405239
405239
405239
405239
405239
405239
406601
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584
408584 | COLLIER
412587
414312 | CARLOS L.
516819 | A18099
416938
417500
413710
415731
412350
412356
41236
413115
415474
415474 | | ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ | 2
800 N
800 N | 1
328 N | α
α | | | В | M 9 | G₩ | | | AG | AG | ٧d | | | 26 6/78
40
52 | 26 6/78 | 26 9/87
44
54
60
60
60
54
43
43
43
43
44
43 | | | 02 | 02 | 2 22222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 4 | 6.00 (8.00 (| 8.00 | 6 . 198 | | 774 4 74 4 74 4 74 4 74 4 74 4 74 4 74 | 03
1 01
1 01 | 03 | 03
991 01
06 01
06 01
06 01
06 01
06 01 | | | 19 | 17 | | | 2600108-128 2600108-32 2600108-33 2600108-33 2600108-34 2600108-35 2600108-36 2600108-36 2600108-37 2600108-37 2600108-17 | 132.94
2600109-9
2600109-10 | 56.69
2600110-10 | 3668.11
2600112-13
2600112-13
2600112-13
2600112-10
2600112-13
2600112-13
2600112-14
2600112-15
2600112-16 | | 156 | 2600109 | 2600110 | 2600112 | ``` 415374 416316 415329 412927 412927 417095 424726 42726 425393 4267392 4267392 4267393 4267392 4267393 4267393 427380 420076 420076 420076 420076 420076 420076 420076 421829 422323 425862 431655 432731 435275 438534 420102 418176 440124 441493 438538 438341 440111 440824 442149 439008 442067 442400 441532 435205 435205 435428 433307 429933 428202 430286 419151 421004 10.00 8.00 10.00 2600112-66 2600112-67 2600112-15 2600112-17 2600112-18 2600112-19 2600112-20 2600112-20 2600112-22 2600112-22 2600112-23 2600112-29 2600112-29 2600112-39 2600112-39 2600112-39 2600112-39 2600112-36 2600112-36 2600112-36 2600112-19 2600112-20 2600112-21 2600112-23 2600112-23 2600112-24 2600112-25 2600112-54 2600112-55 2600112-56 2600112-59 2600112-59 2600112-59 2600112-59 2600112-59 2600112-59 2600112-63 2600112-64 2600112-65 2600112-41 2600112-42 2600112-43 2600112-43 2600112-48 2600112-49 600112-40 ``` 716259 715917 715888 715008 737934 717710 720844 (719948 (719576 (718916 (759746 757279 757868 757322 760581 758243 759211 747400 759200 722698 723154 720936 719907 719103 721060 72010 | | 15 | 26
26
26 |
--|------------------------------------|----------------------------|-------|-------|------------|------|------------|---------------|------------|------------|--------------|------------|------|------------|------|----------|------|----------|------|------|--------------|--|------|--------------| | | 1.5 | 000
8.8.8 | 13 | 20
61
53 | 08
01
04 | ONS | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 03 | 0 0 | 03 | 0 0 | 03 | 03 | 5 6 | 03.0 | 03 | 03 | 03 | 3 6 | 03 | 03 | | 11 GW 6 GW 72 GW 73 GW 74 GW 74 GW 75 GW 75 GW 76 7 | 1 GW
7 GW
3 GW | ra
C | 9 GW | | в С | 9 | ٠ - | · ~ | 4 C | N | 6 0 L | വ | _ | - 0 | ٦, | 4 | y < | · < | 4 | ~ . | ۲- د | ν – | 4 | 4 GW
SW | | 737761
735399
735399
731651
731886
729655
729655
727618
727618
727638
727638
727638
727638
727638 | TRUS
87812]
87790
87808; | JACKMAN | 82859 | 310 | 317 | 297 | 317
318 | 324 | 324
472 | 472 | 456 | 436
451 | 459 | 443
445 | 400 | 402 | 407 | 407 | 407 | 384 | 384 | 384 | 386 | 389 | | 958
1124
1124
9940
9940
973
977
910
910
321 | LEY CI
5957
6025
5644 | | 546 | (A) | r~ 10 | 0 | *T | - 5 57 | mu | 0 | α | vo | F | ∽ | m | ~ C | NI C | | 10 | 57 4 | _ 0 | ייו מי | . 4 | vo | | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | SCHLB
3359
3360
3350 | EVELYN | 5069 | 90 | 90 | 7. | 11 | 14 | 11 | 95 | 96 | ν φ
υ φ | 6 | ر
م | 90 | 900 | y o | 96 | 95 | 95 | 96 | 9 6 | 98 | or
or | | | 222 | × | zz | : z | 2 2 | z | z 2 | z | zz | zz | z; | zz | z | 2 2 | z | z | Z 2 | zz | z | z | 2 2 | z 2 | : 2 | Z | | | 3
500
30 | 30 | 3 | вотн | 7 AG | AG | 11/87 | 8//6 | 663
344
344
661
660
660
660
744
744
744
744 | 26
30
180 | 26 | 0000 | | | | 02 | 6.00
4.00
6.00
4.00 | | 0,0 | 0 | 8.00 | 0 | 0.0 | 9.0 | 0.0 | . 0. | 0. | ? 0 | 0. | 0.0 | | 0. | 0. | <u> </u> | 0. | 0. | 0. | 0.0 | . 0 | 0 | | L | . 4 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 03
03
01
03
01 | 03 | ب ب | ص د | 76 01 | Q (| o u | ی د | ہ و | | ~ (| | ~ | r r | ٠, | ~ | r- r | - ر- | -م | - | ۱ ما | <u>, </u> | - [- | r~ | | | 15. | | , , | 1 | - | | т - | Η — | П г | , u,
44 | | | 7 | | | - | - | ٦,- | 1 | rrd | , , , | r-4 r- | | · [- | | 22 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | 4-7 | e | 5-1 | 5-2 | 30 G | 5-2 | 5-2 | 5-2 | 5-2 |) J | 5-9 | 5-1 | 5-1 | 5-1 | 5-1 | 5-1 | 5. | 7 - 2 | 5-2 | 5-2 | 5-2 | 5-2 | 51.7 | 5-26
5-8W | | 60011
60011
60011
60011
60011
60011
60011
60011
60011 | 7.72
600114
600114
600114 | 499.1 | 60011 | 6001 | 60.01 | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | 60011 | 6001 | 60011 | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | 6001 | 60011 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 4
6 21 21 21 | 5 2 2 | 500 | 1 (2) | 00 | 10 | 600 | N (V: | 200 | 2 % | 2 | ~ ~ | 2 | ~ (| 7 ~ | 2 | 2 (| 70 | ~ | 2 | C) I | NE | 11 | 200 | | | 260011 | 26001]
26001]
26001] | 15 | 8 | 10000 0.50 600 0.50 900 0.50 82 0.85 | | 757 0.50 | 170 0.85 | 561 0.85 | 1386 0.50 | 2740 0.50 | 60 0.85 | |--------------------------|---|--|---|--|---|----------------------------| | | 56 | 15 | 15 | 1.5 | 9 9 | ਹ
ਦਰ | | | 0.8 | 0.8 | 8 | ∞
• | ω ω
0 0 | 1.5 | | | E-1 | 13 | 13 | 13 | 15 | 13 | | | 03
03 | 01
04
04 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | INSTITUTION 03 03 03 01 01 01 01 01 01 01 | .04 | | MS
MS | .5
751200 GW
751088 GW
751027 GW | GROVES
795300 GW
795920 GW
795660 GW
797760 GW | RTIES
808200 GW
807400 GW
806000 GW
805400 GW
803600 GW | 873511 GW
874427 GW
877480 GW
877480 GW
879888 GW
882257 GW | ORRECTIONAL
718618 GW
718699 GW
717556 GW
717590 GW
717270 GW
717270 GW
717583 GW
715583 GW
713584 GW
713584 GW
713586 GW
713596 GW
710596 GW | WILLIAMS
877035 GW | | | B-J GROVE
442821
440426
438165 | MACKEY GR
363540
363540
363540
363300 | PBJ PROPE
344600
344200
347200
344200 | JEBCO GRO
415164
415123
414935
415045
415010
420326
420326
420328
420230
420230 | HENDRY COJ
414283
416993
414455
427258
420837
420837
420831
422881
420935
420955
419781
420912
421648 | JAMES R. 1
326523 | | | 3
400 N
400 N
400 N | 250 N
250 N
250 N
250 N | 6 N
711 N
740 N
385 N
385 N
567 N | N N N N N N N N N N N N N N N N N N N | 500 500 600 600 600 600 600 600 600 600 |
2
250 N | | | 3 € | 0 0 2 0 0 2 W | 222228
002200 | ₹ | В | GW
0.2 | | | 26 10/88 AG
90
90
90 | 26 10/87 AG
35 20
60 140
60 80 | 26 10/87 AG
00 140
00 140
00 140
00 140
00 140 | 26 12/87 AG
24 24 24
24 24
24 24
24 24
24 24
24 24 | 26 8/87 AG
60
60
60
60
30
30
30
30
30
30
50
50 | 26 12/87 AG
20 60 | | | 128.15 02 8.00 02 8.00 02 8.00 02 | 28.78 02 3
8.00 02 3
8.00 02 10
8.00 02 10
8.00 02 10 | 94.98 02 20
12.00 02 20
12.00 02 20
10.00 02 20
10.00 02 20
10.00 02 20 | 292,97
8.00 02
8.00 02 | 8 .00 .09 8 .00 02 8 .00 02 8 .00 02 8 .00 02 8 .00 02 6 .00 02 6 .00 02 6 .00 02 6 .00 02 6 .00 02 8 | .339 01 2
6.00 02 12 | | | 03
192 01
192 01
192 01 | 03
172 01
172 01
172 01 | 03
172 02
172 02
172 02
172 02
172 02
172 02 | 03
155 01
155 01
155 01
136 01
136 01
137 01
137 01
156 01
156 01 | 206 01
206 01
206 01
207 01
207 01
207 01
207 01
207 01
207 01
207 01
207 01
207 01 | 153 01 | | 26UU115-SW
2600115-SW | 600116 348.18
2600116-69
2600116-70
2600116-71 | 600118 78.19
2600118-41
2600118-42
2600118-43
2600118-44 | 600121 258.03
2600121-50
2600121-51
2600121-52
2600121-53
2600121-53
2600121-54 | 600123 795.99 2600123-10 2600123-11 2600123-12 2600123-1 2600123-1 2600123-2 2600123-3 2600123-3 2600123-3 2600123-3 2600123-3 2600123-3 2600123-3 | 600126 2794.62
600126 2600126-45
2600126-47
2600126-114
2600126-115
2600126-115
2600126-117
2600126-117
2600126-118
2600126-121
2600126-121
2600126-121
2600126-123
2600126-123
2600126-123
2600126-125
2600126-125
2600126-125
2600126-125 | 60012/ 27.60
2600127-10 | | | 56 | 26 | 5 | 26 | 26 | 26 | | 86 0,50 | 465 0.50 | 600 0.85 | 703 0.85 | 1731 0.50
460 0.50
260 0.50 | |--|---|--|--|--| | 15 | 35 | 15 | ऽ
ल | 9 | | 0.8 | 8.0 | 8 | 1.5 | & & & & | | 13 | en
ਦਾ | 13 | 13 | 20 113 611 611 | | 2 BERCHTOLD GROVES
00 N 435568 883401 GW 03
00 N 433021 883696 GW 03 | 7 LAKE BUTLER GROVES, INC. 900 N 341890 815150 GW 04 700 N 339820 881390 GW 04 N 340820 885150 GW 04 N 343030 88350 GW 01 N 343230 881690 GW 01 GW 342230 882520 GW | 3 PAUL & WHEELER
00 N 359850 807700 GW 04
00 N 358500 807100 GW 04
00 N 359100 805550 GW 04 | 10 BOB PAUL (KINSER GROVE) 600 N 359045 883751 GW 04 600 N 361289 883596 GW 04 400 N 363795 881700 GW 04 40 N 362278 880198 GW 04 40 N 362278 880198 GW 04 600 N 323409 878304 GW 04 600 N 323409 878304 GW 04 600 N 323379 878490 GW 04 600 N 323379 878490 GW 04 | 425109 708245 GW 03
424636 708243 GW 03
424636 708243 GW 03
427225 705625 GW 03
427225 705625 GW 03
42347 70330 GW 03
424754 705007 GW 03
424754 705007 GW 03
420019 70765 GW 03
42019 70764 GW 03
421950 70561 GW 03
421950 70561 GW 03
421950 70561 GW 03
421950 70518 GW 03
426408 70018 03 | | GW
7 | 00 0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | GW
02 1
02 1
02 1 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | A B | | AG (| A A C | AG | AG. | A A G | | 10/88 | 113
132
132
40 | 10/87
60
80
80 | 12/87
90
90
110
90
97
118
120
100 | 7876 | | 26
70
100 | 26
216
200
50
50 | 26
130
125
145 | 26
140
140
140
140
180
1140
140 | | | 50.70 02
6.00 02
6.00 02 | 2.62 01
10.00 02
10.00 02
8.00 02
6.00 02 | 101.57 02
8.00 02
8.00 02
8.00 02 | 6.74 01
12.00 02
12.00 02
12.00 02
6.00 02
6.00 02
6.00 02
6.00 02
7.00 02
8.00 02 | 492.02 02
10.00 02 | | 03
137 01
137 01 | 135 01
135 01
135 01
135 01
135 01
135 04 | 03
172 01
172 01
172 01 | 134 01
134 01
134 01
134 02
134 01
133 01
153 01
153 01 | 207 01
207 01 20 | | 2600128 71.90
2600128-4
2600128-9 | 2600130 213.88
2600130-12
2600130-13
2600130-14
2600130-15
2600130-15
2600130-17
2600130-17 | 2600134 275.97
2600134-90
2600134-91
2600134-92 | 2600135 549.69 2600135-4 2600135-4 2600135-5 2600135-7 2600135-7 2600135-11 2600135-12 2600135-13 2600135-13 | 2600136 2240,83 2600136 2600136-69 2600136-70 2600136-71 2600136-71 2600136-74 2600136-74 2600136-74 2600136-78 2600136-78 2600136-89 | | | LIVESTOCK WATERING | 26
26
26 | i |---|--|--|--|--|----------------------------|--|----------------------------|---|--|----------------------------|---|------------------------------|---|--------------------------------|--------------------------------|--|----------------------------|--|----------------------------|----------------------------|----------------------------|---------------------------|--|---------------------------|---------------------------|---|---------------------------|---------------------------|---------------------------|---|---------------------------|--|---| | | STOCK W | 8888 | LIVES | 13
20
61
15 | 03
03
03 | 033 | | 03 | 03 | 03 | r 0 | 03 | 80
03 | 80 | 03 | e e e | 03 | 03 | 03 | 03 | າ ຄ
ດ ດ | 03 | E0 | 03 | 80 | n 60 | 0.3 | m m | 3 0 | 03 | m r | 03 | 0.3 | 03 | m m | 99 | m r | , | | 8 8 8 8
0 8 8 8
0 8 8 | GW
GW | | S W | 3 8 | | | MS. | | | | | | 705738
704502
702807
700325 | 0.00 | Ž. | 5.7 | 2 5 | 9 | 2 O | 9 | ထ က | 2.5 | 2.7 | ار
د د | 4. | mo | 2 | 9 7 | ر
ت ت | 9 | e
e | 2 -0 | S C | 4 0 | ~ | ب
ص بر | 3 00 | _ | m w | - o | 9 | σ, . | হু ০ |) 4r | ي ري | > | | 705 | 863040
863155
863568 | FARM | 79136
79132 | 790(| 788, | 787 | 793(| 7929 | 793(| 190 | 7899 | 7886 | 7887 | 7865 | 784 | 7844 | 7828 | 7819 | 7818 | 7818 | 7802 | 3087 | 7802 | 778] | 777 | 7765 | 774 | 7741 | 7732 | 7732 | 7682 | 7669 | , | | 7410
7417
7029
4733 | 073
618
930 | ERER | 465
152 | 124
547 | 148 | 345
129 | 436 | 140 | 443 | 001 | 097 | 042 | 681 | 290 | 693 | 147 | 125 | 467 | 451 | 795 | 574 | 644 | 385 | 113 | 660 | 243
255 | 206 | 191 | 112 | 287 | 360 | 550 | | | 417
417
417
414 | USSC
50807;
516618
51593(| ZIPP | 5054 | 504 | 504 | 501
501 | 492 | 491 | 497 | 491 | 492 | 492 | 491 | 4 9 9 | 497 | 4. 44.
2. Q.
2. Q. | 464 | 4 2
Q Q | 492 | 166 | 4 92 | 491 | 191 | 491 | 491 | 491 | 491 | 493 | 493. | 491 | 4 9 0 | 495 | | | | 222 | 11 | z z | zz | z | z z | z | zz | z 2 | 2 2 | zz | | | | | | z | z 2 | . z | 2 2 | zz | z | Z 2 | z | z | z z | : z | z | z | 2 2 | zz | z z | : | | | m w = 0 | | | | | | | | | | | | 8 | 8 | 200 | 3 | 175
175
240
140 | 105 | | | | | | | | | | | 3000 | 12 | 12 | 7 | GW 17
01 17
02 24
01 14 | 0 | | | | | | | | | | | 30 | 12 | 12 | 77 | , | | | | | | | | | | | | | | | | | | | AG GW 01 1 02 2 01 1 1 01 1 | AG GW 10 | | | | | | | | | | | 30. | 12 | 12 | 71 | • | | | | | | | | | | | | | | | | | | | /82 AG GW 1
70 01 1
60 02 2 | 2/87 AG GW 10 | | | | | | | | | | | 30 | 12 | 12 | 71 | • | | | | | | | | | | | | | | | | | | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 82 AG GW
70 01 1
60 02 2
01 1 | /87 AG GW 10 | 130
130 | 130
130 | 130 | 130 | 130 | 130
130 | 130 | 130 | 130
130 | 30 | 20 | 30 | 30 | 30 | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 135 | 135 | 135
135 | 135 | 135 | 135 | 135 | 130 | 130 | | | 02 85
02 85
02 85
02 85 | 26 1/82 AG GW
90 70 01 1
00 60 02 2
84 01 1 | 6 12/87 AG GW 10 | | | | | Α, | | | | | 130 | 120 | 130 | 130 | 130 | - | | | · · | ٦, | 7 | - | ٠. | Н | | • | - | | | | | • | | .00 02
.00 02
.00 02
.00 02
.00 02 | 26 1/82 AG GW 1.00 02 90 70 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 02 26 1 2/87 AG GW 10 | 02 1 | 02 1 | 02 1 | 020 | 02 1 | 02 1 | 02 1 | 02 1 | 020 | 02 130 | 02 120 | 02 130 1 | 02 130 | 02 130 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02
1 1 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | | | 0 02 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 26 1/82 AG GW 00 02 90 70 01 1 1 00 02 100 60 02 2 00 00 02 2 00 02 02 00 02 00 00 0 | 2 02 26 12/87 AG GW 10 | | 02 1 | 02 1 | 020 | 02 1 | 02 1 | 02 1 | 02 1 | 020 | 02 130 | 02 120 | 02 130 1 | 02 130 | 02 130 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02
1 1 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | 02 1 | | | 01 4.00 02 8
01 8.00 02 8
01 8.00 02 8
01 8.00 02 8 | 26 1/82 AG GW 1.00 02 90 70 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 03 847.12 02 26 1 2/87 AG GW 10 | 01 6.00 02 1
01 6.00 02 1 | 01 6.00 02 1
01 6.00 02 1 | 6,00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1
01 6.00 02 1 | 6.00 02 1 | 01 6.00 02 1 | 01 8.00 02 1
01 6.00 02 1 | 01 8.00 02 130 | 02 12.00 02 120 | 01 6.00 02 130 1 | 01 6.00 02 130 | 01 6.00 02 130
01 6.00 02 130 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1
01 6.00 02 1 | 01 6.00 02 1 | 01 6.00 02 1 | 6.00 02 1 | 01 6.00 02 1
0 6 00 02 1 | 01 6.00 02 1 | 01 6.00 02 1
01 6.00 02 1 | | | 4.00 02 8
8.00 02 8
8.00 02 8 | 26 1/82 AG GW
6.00 02 90 70 01 1
8.00 02 100 60 02 2
6.00 02 84 01 1 | 03 847.12 02 26 1 2/87 AG GW 10 | 6.00 02 1
6.00 02 1 | 76 01 6.00 02 1
76 01 6.00 02 1 | 6,00 02 1 | 76 01 6.00 02 1
76 01 6.00 02 1 | 75 01 6.00 02 1 | /5 01 6.00 02 1
75 01 6.00 02 1 | 75 01 6.00 02 1 | 75 01 6.00 02 1 | 75 01 8.00 02 1
75 01 6.00 02 1 | 75 01 8.00 02 130 | 75 02 12.00 02 120 | 93 01 6.00 02 130 1 | 93 01 6.00 02 130 | 93 01 6.00 02 130 | 93 01 6.00 02 1 | 93 01 6.00 02 1
93 01 6 00 02 1 | 93 01 6.00 02 1 | 93 01 6.00 02 1 | 93 01 6.00 02 1 | 33 01 6.00 02 1 | 13 01 6.00 02 1
1 50 00 8 10 E8 | 3 01 6.00 02 1 | 3 01 6.00 02 1 | 3 01 6.00 02 1
33 01 6.00 02 1 | 3 01 6.00 02 1 | 3 01 6.00 02 1 | 6.00 02 1 | 6.00 02 1 6.00 02 1 6.00 02 1 8.00 02 1 8.00 02 1 8.00 02 1 8.00 02 1 8.00 02 1 8.00 02 1 8.00 02 1 8.00 02 1 | 3 01 6.00 02 1 | 6.00 02 1
93 01 6.00 02 1 | | | 7 206 01 4.00 02 8
3 206 01 8.00 02 8
9 206 01 8.00 02 8 | -4 158 01 6.00 02 90 70 01 1 1 -5 158 01 8.00 02 100 60 02 2 | 03 847.12 02 26 1 2/87 AG GW 10 | -11 176 01 6.00 02 1
-12 176 01 6.00 02 1 | -13 176 01 6.00 02 1
-14 176 01 6.00 02 1 | -15 176 01 6,00 02 1 | -15 1/6 01 6.00 02 1
-17 176 01 6.00 02 1 | -87 175 01 6.00 02 1 | -88 1/5 01 6.00 02 1
-89 175 01 6.00 02 1 | -90 175 01 6.00 02 1 | -92 175 01 6.00 02 1 | -93 175 01 8,00 02 1
-94 175 01 6,00 02 1 | -95 175 01 8.00 02 130 | -96 175 02 12.00 02 120
-65 193 01 6 00 02 130 | -66 193 01 6.00 02 130 1 | -67 193 01 6.00 02 130 1 | -68 193 01 6.00 02 130
-69 193 01 6.00 02 130 | -70 193 01 6.00 02 1 | -71 193 01 6.00 02 1
-72 193 01 6 00 02 1 | -73 193 01 6.00 02 1 | -74 193 01 6.00 02 1 | -76 193 01 6.00 02 1 | -77 193 01 6.00 02 1 | -/8 193 01 6.00 02 1
-79 193 01 6 00 02 1 | -80 193 01 6.00 02 1 | -81 193 01 6.00 02 1 | -82 193 01 6.00 02 1 -83 193 01 6.00 02 1 | -84 193 01 6.00 02 1 | 85 193 01 6.00 02 1 | 86 193 01 6.00 02 1 | 8/ 193 01 6.00 02 1
88 193 01 6.00 02 1 | 89 193 01 6.00 02 1 | 193 01 6.00 02 1
193 01 6.00 02 1 | | | 36-27 206 01 4.00 02 8 36-28 206 01 8.00 02 8 36-29 206 01 8.00 02 8 36-30 206 01 8.00 02 8 | 41-4 158 01 6.00 02 90 70 01 1
41-5 158 01 8.00 02 100 60 02 2
41-6 158 01 6.00 02 84 01 1 | 2.11 03 847.12
02 2 6 12/87 AG GW 10 | 13-11 176 01 6.00 02 1
13-12 176 01 6.00 02 1 | 13-13 176 01 6.00 02 1
13-14 176 01 6.00 02 1 | 13-15 176 01 6.00 02 1 | 43-16 1/6 01 6.00 02 1
43-17 176 01 6.00 02 1 | 13-87 175 01 6.00 02 1 | 43-88 1/5 01 6.00 02 1
43-89 175 01 6.00 02 1 | 43-90 175 01 6.00 02 1 | 43-92 175 01 6.00 02 1 | 43-93 175 01 8,00 02 1
43-94 175 01 6,00 02 1 | 43-95 175 01 8.00 02 130 | 43-96 175 02 12.00 02 120
43-65 193 01 6 00 02 130 | 43-66 193 01 6.00 02 130 1 | 13-67 193 01 6.00 02 130 | 43-68 193 01 6.00 02 130 1
43-69 193 01 6.00 02 130 | 13-70 193 01 6.00 02 1 | 13-71 | 13-73 193 01 6.00 02 1 | 13-74 193 01 6.00 02 1 | 13-76 193 01 6.00 02 1 | 193 01 6.00 02 1 | 43-78 193 01 6.00 02 1
33-79 193 01 6 00 02 1 | 13-80 193 01 6.00 02 1 | 13-81 193 01 6.00 02 1 | 13-82 193 01 6.00 02 $113-83$ 193 01 6.00 02 11 | 3-84 193 01 6.00 02 1 | 13-85 193 01 6.00 02 1 | 13-86 193 01 6.00 02 1 | 13-87 193 01 6.00 02 1
13-88 193 01 6.00 02 1 | 43-89 | 143-90 193 01 6.00 02 1
143-91 193 01 6.00 02 1 | | | 7 206 01 4.00 02 8
3 206 01 8.00 02 8
9 206 01 8.00 02 8 | 03 26 1/82 AG GW
1-4 158 01 6.00 02 90 70 01 1
1-5 158 01 8.00 02 100 60 02 2
1-6 158 01 6.00 02 84 01 1 | 3462.11 03 847.12 02 2 6 12/87 AG GW 10 | 3-11 176 01 6.00 02 1
3-12 176 01 6.00 02 1 | 500143-13 176 01 6.00 02 1
500143-14 176 01 6.00 02 1 | 500143-15 176 01 6.00 02 1 | 500143-16 1/6 U1 6.00 U2 1
500143-17 176 01 6.00 02 1 | 500143-87 175 01 6.00 02 1 | 500143-88 1/5 01 6.00 02 1
500143-89 175 01 6.00 02 1 | 500143-90 175 01 6.00 02 1 | 500143-91 175 01 6.00 02 1 | 500143-93 175 01 8.00 02 1
500143-94 175 01 6.00 02 1 | 500143-95 175 01 8.00 02 130 | 500143-96 175 02 12.00 02 120
500143-65 193 01 6 00 02 130 | 300143-66 193 01 6.00 02 130 1 | 500143-67 193 01 6.00 02 130 1 | 500143-68 193 01 6.00 02 130
500143-69 193 01 6.00 02 130 | 500143-70 193 01 6.00 02 1 | 500143-71 193 01 6.00 02 1
500143-72 193 01 6 00 02 1 | 500143-73 193 01 6.00 02 1 | 500143-74 193 01 6.00 02 1 | 000143-76 193 01 6.00 02 1 | 00143-77 193 01 6.00 02 1 | .00143-78 193 01 6.00 02 1 | 00143-80 193 01 6.00 02 1 | 00143-81 193 01 6.00 02 1 | 00143-82 | 00143-84 193 01 6.00 02 1 | 00143-85 193 01 6.00 02 1 | 00143-86 193 01 6.00 02 1 | 00143-8/ 193 01 6.00 02 1 | 00143-89 193 01 6.00 02 1 | 00143-90 193 01 6.00 02 1
00143-91 193 01 6.00 02 1 | | | 600136-27 206 01 4.00 02 8
600136-28 206 01 8.00 02 8
600136-29 206 01 8.00 02 8
600136-30 206 01 8.00 02 8 | 9.20 03 26 1/82 AG GW 600141-4 158 01 6.00 02 90 70 01 1 600141-5 158 01 8.00 02 100 60 02 2 600141-6 158 01 6.00 02 84 01 1 | 462,11 03 847.12 02 2 6 12/87 AG GW 10 | 2600143-11 176 01 6.00 02 1
2600143-12 176 01 6.00 02 1 | 500143-13 176 01 6.00 02 1
500143-14 176 01 6.00 02 1 | 500143-15 176 01 6.00 02 1 | 500143-16 1/6 U1 6.00 U2 1
500143-17 176 01 6.00 02 1 | 500143-87 175 01 6.00 02 1 | 500143-88 1/5 01 6.00 02 1
500143-89 175 01 6.00 02 1 | 2600143-90 175 01 6.00 02 1
2600143-91 175 01 6.00 02 1 | 500143-91 175 01 6.00 02 1 | 2600143-93 175 01 8,00 02 1
2600143-94 175 01 6,00 02 1 | 500143-95 175 01 8.00 02 130 | 500143-96 175 02 12.00 02 120
500143-65 193 01 6 00 02 130 | 300143-66 193 01 6.00 02 130 1 | 500143-67 193 01 6.00 02 130 1 | 500143-68 193 01 6.00 02 130
500143-69 193 01 6.00 02 130 | 500143-70 193 01 6.00 02 1 | 500143-71 193 01 6.00 02 1
500143-72 193 01 6 00 02 1 | 500143-73 193 01 6.00 02 1 | 500143-74 193 01 6.00 02 1 | 000143-76 193 01 6.00 02 1 | 00143-77 193 01 6.00 02 1 | .00143-78 193 01 6.00 02 1 | 00143-80 193 01 6.00 02 1 | 00143-81 193 01 6.00 02 1 | 00143-82 | 00143-84 193 01 6.00 02 1 | 00143-85 193 01 6.00 02 1 | 00143-86 193 01 6.00 02 1 | 00143-8/ 193 01 6.00 02 1 | 00143-89 193 01 6.00 02 1 | 00143-90 193 01 6.00 02 1
00143-91 193 01 6.00 02 1 | | 1600 0.50 100 0.50 1360 0.50 850 0.50 ``` CAN COM 35 3 35 3 35 35 U U GW GW 3 3 S 35 SE 35 35 35 ČΣ 35 ₹ 5 X. 3 35 35 35 35 35 766086 764472 764892 764348 764882 764798 764303 766586 786144 778124 770105 767530 771834 164686 763731 350777 764315 764817 164559 64844 764108 162922 764618 768270 87342 86124 84662 83069 81760 777045 775563 174228 774603 772844 772198 771658 70188 769027 167721 766583 019997 166546 64779 64641 65480 6442] 69469 63519 64928 026991 186471 183527 504620 503232 500500 505760 496636 495742 495712 495120 495136 494451 493875 493861 493426 492132 491614 491975 501405 500186 504536 504378 504117 504557 502840 502097 505948 503270 502353 500756 505526 501557 500005 491181 493604 493657 504024 503979 500708 505495 504563 503259 302135 502303 500057 503745 191172 193432 500235 504794 503271 2000 2400 2400 2400 2400 2400 2400 02 02 02 02 80 80 80 6.00 6.00 12.00 12.00 12.00 12.00 6.00 12.00 12.00 12.00 6.00 6.00 6.00 6.00 6.00 2600143-100 2600143-101 2600143-102 2600143-103 2600143-104 2600143-105 2600143-106 2600143-211 2600143-212 2600143-213 2600143-141 2600143-142 2600143-95 2600143-96 2600143-97 2600143-108 600143-109 2600143-67 2600143-68 2600143-74 2600143-75 2600143-79 2600143-80 2600143-83 2600143-84 2600143-88 2600143-89 600143-143 3600143-70 2600143-98 2600143-62 2600143-63 2600143-64 600143-65 3600143-66 600143-69 3600143-72 600143-76 600143-77 2600143-82 600143-85 600143-87 600143-73 600143-78 600143-71 600143-81 600143-91 ``` | | 0.85 | | 0.50 | 0.50 | 0.50 | 0.85 | 0.50 | 0.85 | |---|-----------------------------------|--|---|--------------------------------|--|--|---|----------------------------------| | | 34 | | 9. | 400 | 300 | 17 (| 40 (| 314 (| | • | | 10 | | • | e · | | | ,,, | | | r. | WATERING | τŽ | 9 | က်က် | ស | z, | J. | | |] | WATE | 7 | ~ | 7 7 | - | H | П | | | 8.0 | | 0.8 | 0.8 | 8 8 | 8.0 | 8.0 | 0.8 | | | en en | LIVESTOCK | m | 0 | 0 - | ೮ | m | ~) | | | , ~ 1 | 171 | ₽ | 2 | N 0 | , | ei
ei | ⊢ | | · | | | | | ~ | | | | | | | T | | | PROPERTY | | | | | | | RANCH | | | PROF | | | | | .m en en | . | NO | | | SEARS
04
04
04
04
04 | | JOHN
03 | | | 000 | 03 | VISI
 01
 01 | 01 01 | 03 | 1 | | | 01 | | 79 GW
32 GW
32 GW
22 GW
660
600
000
000
20 | ES
74 GW
87 GW
70 GW | N DI
7 GW
7 GW
7 GW | 3 0 W
3 0 W
0 0 W
0 0 W | S GW
1 GW | ELD
S GW
5 GW
5 GW
5 GW
7 GW
7 GW | ~ | K. T
8 GW
3 SW | 4
G.W. | | 682
9901
9901
9901
9901
9901
901 | ROV
702
701
700 | SOUTHERN
757717
747293
736637 | 4702
4722
4681
4700 | ELD
10251
10224 | BARFIEI
845115
845890
841175
845112
844975 | 30 E C 4 3 3 5 7 5 8 5 7 4 9 0 0 7 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | LI & K.
807318
809253 | 3LES
876074
874900 | | | | ν, επ. ω | N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | E C | | | PAUL MIDILI
352329 807
353356 809 | ≍ | | 503280
503286
503256
493540
492000
492000
490900
506740 | LBRODT
24897
24692
24488 | 30808
30808
30801 | K-BOB, 361264
361264
362080
362070 | FRED BAR
462282
456925 | S 733 | GEORGE 1
365087
347080
349550 | JL MJ
2329
3356 | J. NC
151417
153072 | | N N N A A A A N A A A N N N | Σ
1 4 4 4 | US (5) | X | FRE
46 | 3AME
359
368
3759
3759
360 | Ü | | i C C | | 2222222222222 | z | 222 | | | 222222 | | ZZ | m
ZZ | | 2400
2400
2400
2400
50000
5000
5000
5000 | 180 | 3
192
192
101 | 3 | 8 | 9
1250
1250
1250
1250
1450
150
150 | | 200
6000 | 600
600 | | 2004 H | GW
02 | M.
G | вотн | M. | 8 . | вотн | BOTH
01 | BOTH
01
01 | | | AG G | 9 9 8 G | ₽ | AG G | | | | • | | 10
10 | 7
80
5.
5. | 7 40
40
30 | Ř . | 2
A | 8 AG | 7 AG | 7 AG
40 | 7 AG
20
20 | | ਜਜਵਾ | 8/L | 8/8 | 4/8 | 5/8 | 8/8 | 4/8. | 8/6 | 8/8 | | 120
120
120 | 26
140
16 | 26
60
50
50 | 26
22
16
18 | . 26 | 26
1150
1150
1150
1150
200
200
200
200 | 26
40
140 | 26 | 26
40
40 | | 02 02 02 | 02 02 02 02 02 | 02
02
02 | 02 02 02 02 | 02
02
02 | 222222222 | 01 02 02 | 02 | 01
02
02 | | 2.00 | 000 | 000 | 0000 | 000 | 6.00
88.00
8.00
8.00
8.00
7.00
8.00 | 00. | 1.00 | 00 | | | 5.67
8
8 | 1.62
6
6 | 10.9
2
6 | 94.9
8 | 667.
88
88
92
122 | .401
10 | 11.5 | 1.80 | | 000000000000000000000000000000000000000 | 03
03
03 | 03
01
01 | 03
01
01 | 03
01
01 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 03
01
01 | 03 | 03
01 | | 194
194
194 | 156
156
156 | 194
194
209 | 154
154
154 | 208 | 154
154
154
154 | 554 | 172 (| 154 (
154 (| | | | | | | 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 1 | | | | 2600143-148 2600143-149 2600143-150 2600143-5W1 | 44-4
44-5
44-6 | 46-60
46-61
46-12 | 48-49
48-50
48-51
48-51 | 50-31
50-91 | 00
51-55
51-55
51-55
51-15
51-17 | | 57-13
57-5W | 8-95
8-96 | | 6001
6001
6001
6001
6001
6001
6001
6001 | 5.41
6001
6001 | 19.71
2600146
2600146
2600146 | 46.13
2600148
2600148
2600148 | 650.00
2600150-
2600150- | 55.
0001
0001
0001
0001
0001 | .66
001
001
001 | . 28
001
001 | 144.53
2600158-9
2600158-9 | | 222222222222222222222222222222222222222 | | | 47777 | 2,5 | 4 666666 4 | 2002 |
31
26
26 | 14
26
26 | | | - 000 | 9 | | 0 | - | | 7 | | | | - 000 | 46 | 8 | 50 | 0.0 | 52 | 57 | 8 · | | | - 00 | 9 | 148 | 0 | - | | 7 | | | | 3602 | |--|--| | | rong of the control o | | | | | | n
N | | | MONITOR WELL MONITOR WELL MONITOR WELL MONITOR WELL MONITOR WELL | | 01 | 4 4 4 4 4 9 7 9 7 9 9 9 9 9 9 9 9 9 9 9 | | 873671 GW
872090 GW
875250 SW
873750 SW
873750 SW | 823141 GW
822127 GW
822127 GW
822294 GW
819489 GW
81955 GW
819655 GW
819655 GW
811684 GW
811684 GW
811684 GW
811684 GW
811684 GW
810071 GW
810071 GW
810071 GW
810071 GW
810071 GW
810072 GW
801625 GW
801625 GW
801625 GW
801625 GW
801699 GW
801699 GW
801699 GW
80235 GW
81819 GW | | 353091
351716
352000
352000 | CP1 322137 322137 322137 322137 3218429 318664 318664 316023 316020 | | 600 N
2800 N
2800 N
2800 N | 4888 | | 01 | AG CAMPAGE CAM | | 20 | 7/87/
1665
1665
1705
1705
1706
1707
1707
1708
1708
1708
1708
1708
1708 | | 4 0
0 0 | 22222222222222222222222222222222222222 | | 6.00 02 | 609.78
12.00 02
12.00 02
13.00 02
13.00 02
14.00 02
15.00 02
16.00 02
17.00 02
17.00 02
18.00 02 | | 01
01
01
01 | | | 154
154
154
154 | | | 2600158-97
2600158-98
2600158-SW
2600158-SW
2600158-SW | 2600159-10
2600159-11
2600159-13
2600159-13
2600159-13
2600159-13
2600159-13
2600159-13
2600159-13
2600159-22
2600159-23
2600159-24
2600159-23
2600159-24
2600159-24
2600159-24
2600159-33
2600159-33
2600159-34
2600159-34
2600159-34
2600159-34
2600159-34
2600159-34
2600159-44
2600159-44
2600159-46
2600159-46
2600159-46
2600159-46
2600159-47
2600159-48
2600159-49
2600159-49
2600159-55
2600159-55
2600159-55 | | | 500 0.85 | 125 0.50 | 485 0.50 | 75 0.85 | 2663 0.50
2663 0.85 | |--|----------------------------------|-----------------------------------|--|---|--| | | 15 | 26 | 26 | 1.5 | 15
1 15
FILE | | | 0.8 | 0.8 | 3.6 | 1.5 | 0.8
PERMI | | | 13 | 13 | (THIS PERMIT OVER 13 | 13 | CANE 13 NO WELL LOCATIONS IN | | 00000000000000000000000000000000000000 | 04 | 03 | CO.
03
03
03 | 04
01
01 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 822663 GW
821930 GW
820169 GW
800544 GW
800564 GW
798807 GW
806601 GW
809227 GW | OVES
816750 GW
816750 GW | URRY
707413 GW
705351 GW | INVESTMENT
781600 CW
781600 GW
781600 GW
781600 GW | ROTHERS
872500 GW
871850 GW
872700 GW | 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | 316716
318835
315542
315320
32028
317685
317496
324969
326135 | R. B. GR(
316750
318250 | A. B. CU
431141
431095 | BAYROCK
531200
535180
537160
538140 | BOWMAN B
335800
336500
336400 | 2 ALICO | | 2997 Y
4667 Y
606 Y
236 Y
748 Y
748 Y
236 Y
310 Y | 2
1000 N
1000 N | 2
800 N
800 N | 4 7
300 N
300 N
300 N | 3
225 Y
225 Y | 38
1000000000000000000000000000000000000 | | 65 -52 02
85 -32 02
80 -35 02
155 -90 02
159 -90 02
159 -90 02
56 -90
85 -90 02 | 7/87 AG GW
160 02
160 02 | 7/87 AG GW
42
42 | 5/87 AG BOTH
85 -70
85 -70
85 -70
85 -70 | 2/88 AG GW
100 02
01 | AG BOTH | | 125
125
110
240
230
230
230
106 | 26
220
220 | 26
55
55 | 26
105
95
85
95 | 26
130
20
20 | 26 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 | | 8.00 02
8.00 02
8.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | 84.64 02
10.00 02
10.00 02 | 35.97 02
8.00 02
8.00 02 | 139.58 02
8.00 02
8.00 02
8.00 02
8.00 02 | .423 01
10.00 02
6.00 02
6.00 02 | 518.26
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | | 171 01
171 01
171 01
171 01
171 01
171 01
171 01
171 01
171 01 | 03
171 01
171 02 | 03
207 01
207 01 | 03
194 01
194 01
194 01 | 03
153 01
153 0 | 156 02
156 02 | | 2600159-61
2600159-62
2600159-63
2600159-64
2600159-65
2600159-67
2600159-68
2600159-69
2600159-70 | 229.98
2600161-1
2600161-2 | 94.74
2600162-95
2600162-96 | 379.00
2600170-92
2600170-93
2600170-94
2600170-94 | 34.50
2600171-15
2600171-16
2600171-17 | 3528.2
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174-
2600174- | | | 2600161 | 2600162 | 2600170 | 165 | 2600174 | | • | | | | |--|---|--|--| | | 0.85 | 0.50 | 0.85 | | | 2640 | 215 | 600 | | | 15
NOT USED | ८
स | 15 | | | 0.8
3 BUT | 8 | 0.8 | | | 13 0.8 IS EXISTING BUT | 61 | 13 | | | THIS WELL IS E | | A. B. JOHNSON | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VE
04
04
04 | 01
01
01
01
01 | 04 | | GW
GW
GW
GW
GW
GW
GW
GW
GW
GW | CITRUS GROVE
841678 GW
841621 GW
841625 GW
841565 GW | D DAIRY
867503 GW
868992 GW
8689440 GW
870063 GW
868418 GW | . L., J. W
849234 GW
850486 GW
847463 GW
849596 GW | | 414000 | BADCOCK
414552
413349
411881
410586 | FLORILAND
369889
369956 8
368265 8
368185 8
368871 8
369997 8 | E. L., I
378311
378325
375521
375466 | | 1000
1000
1000
800
800
800
800
800
800
8 | 1000 N
1000 N
1000 N
1000 N | 400 N
400 N
400 N
400 N
400 N
400 N
400 N | 4
1200 Y
1200 Y
1200 Y | | | GW
02
02
02 | 001
001
001
001
001 | GW
02
02
02 | | | 7/87 AG
260
260
260
260 | 8/87 AG
35
20
25
35
35
35 | 5/87 AG
200
200
200
200 | | 2550
2550
2550
2550
2550
2550
2550
2550 | 26
290
290
290
290 | 26
60
60
60
60 | 26
250
250
250
250 | | 12.00 02
12.00 02
12.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02 | 446.92 02
12.00 02
12.00 02
12.00 02
12.00 02 | 1.37
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02 | 101.57 02
12.00 02
12.00 02
12.00 02
12.00 02 | | 156 02
156 02
156 02
156 02
156 02
156 02
156 02
156 02
156 02 | 155 02
155 02
155 02
155 02 | 154 01
154 01
154 01
154 01
154 01
154 01 | 03
155 01
155 01
154 01 | | 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- 2600174- | 7 1214.28
2600177-17
2600177-18
2600177-19
2600177-20 | 144.09
2600211-88
2600211-90
2600211-91
2600211-92
2600211-93
2600211-93 | 275.97
2600212-13
2600212-14
2600212-67
2600212-67 | | | 2600177 | 166 | 2600212 | | | IRR IRR
ACRES EFF | H
H
H
H
H
H
H
D
H
H
H |
 | 199 0.85 | 32 0.85 | | 0.85 | 1381 0.85 | |-------------------|----------------------|---|------------------------|---|---------------------|--|---|--------------------------| | ermi | RAIN | p
p
k | 1)
1)
1)
17 | 15 | 15 | | 15 | 15 | | Each P |
 |
 |

 | 8 . 0 | 8.0 | | . 5 | 8.0 | | d for | நடிப் | #
 }

 |
 }

 | 13 | 13 | | 13 | 13 | | ricultural Demand | | | COMMENTS | | | | | | | ===
A 9 | |

 | C AQ | 04
04
04
04 | 0.1 | 0 | 04
04
04
04 | 03 | | - Forcasted | | اعا | YPLNR | AD GROVES
883188 GW
885174 GW
885128 GW
847445 GW | HOWARD
853273 GW | 831996 GW
831996 GW
829528 GW
826409 GW
823731 GW
823287 GW
823287 GW
823409 GW
823409 GW
823393 GW
824339 GW
824339 GW
824339 GW
826521 GW
826521 GW
826521
GW
826521 GW
826521 GW
826521 GW
826521 GW
826521 GW | LY
809208 GW
810178 GW
811329 GW
812160 GW
812984 GW | EL CITRUS
: 805258 GW | | Table 2 | | n for Ea | | RIVER ROAD
338642 88
338423 88
336951 88 | JULIAN H
362838 | RICHARD
368010
366910
366910
363061
36580
37281
36700
367118
361399
361399
36157
361589
361589
361589
361589
361589 | NEIL JOLLY
344508
344624 8
344715 8
344721 8 | JO MAR E
338222 | | ation and | MS. | rmat | 1 Σ 1 | 350 N
250 N
350 N
350 N
375 N | Z
Z | 21
400
500
500
500
400
400
400
400
400
400 | 5 4 6 5 5 4 6 6 5 5 6 6 6 6 6 6 6 6 6 6 | . 66
N | | it Information | USE SRC.
TYPE | 5 H | PMP | AG GW 02 02 02 02 | AG GW
01 | AG GW 02 02 02 02 02 02 02 02 02 02 02 02 02 | AG GW
105 02
105 02
105 02
105 02 | AG GW
01 | | | | | | 4/87
80
60
80
80 | 5/85
20 | 88/9
0 0 8
0 0 8
0 0 0 8
0 0 0 8
0 0 0 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5/87
140
140
140
140
140 | 6/87 | | Use . | 8 | Use | ! !! | 26
120
105
120
120 | 26
30 | 11111111111111111111111111111111111111 | 26
200
200
200
200
200
200 | 26
90 | | Existing Water | MAX MO. | sting Wat | WELL
DIA. | 1.22 01
6.00 02
6.00 02
6.00 02
10.00 02 | 5.37 02
12.00 02 | 10.00 002 10.00 002 10.00 002 10.00 002 10.00 002 8.00 002 9.00 00 | 99.71 02
12.00 02
12.00 02
12.00 02
12.00 02 | 233.79 02
10.00 02 | | e 1 - Exi | ALL | | QUAD
NO. STS | 135 01
135 02
135 02
135 01
135 01 | 03
154 02 | 03
172 01
172 01
173 01
174 01
154 01 | 03
172 02
172 02
172 02
172 02
172 02 | 03
172 02 | | | #

 -
 - | ADINGS (Tab | FACILITY
NUMBER | 91.30
2600215-19
2600215-20
2600215-21
2600215-21 | 32.10
2600217-66 | | 270.90
2600222-20
2600222-21
2600222-22
2600222-23 | 635.30
2600227-56 | | LINE 1 HE | PERMIT
NO. | NE 2+ | ERMIT
O. | 2600215 | 2600217 | 020
167 | . 2600222 | 2600227 | | | | 13 0.8 15 38 0.50 | 13 0.8 15 324 0.85 NOTE: ALLOCATIONS ARE BASED ON POTENTIAL ADVERSE IMPACTS, NOT ON CROP NEED. | 13 0.8 15 952 0.85 NOTE: ALLOCATIONS ARE BASED ON POTENTIAL ADVERSE IMPACTS, NOT ON CROP NEED. | 13 0.8 15 1521 0.85 | |---|--|--|--|--|--------------------------------------| | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0033
0033
0033
0033
0033
0033
0033
003 | 03 | 04 | 0 0 0 0 4 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 | 01 | | 805221 GW
804768 GW
803803 GW
803738 GW
802103 GW
80214 GW
800927 GW
800173 GW
799119 GW
798821 GW
80133 GW | 799726 GW
802700 GW
801726 GW
799894 GW
799892 GW
799892 GW
799892 GW
799892 GW
799896 GW | S
803931
803583
803998 | R GROVES
812399 GW
811073 GW | GROVES
822856 GW
821663 GW
818493 GW
816280 GW | VE
871700 GW
873100 GW | | 340808
338244
338309
341216
343759
344357
343523
344823
343503
343623
343602
343602 | 348413
350865
349952
353406
353406
353406
353406
355393
355393
356281
356281
356281
348629
348629
348629
348629
348629 | A. L. MOM
354087
354485
354813 | GALLAGHE
329822
330393 | GALLGHER
328965
329030
329965
330124 | 3 WITT GROVE
434400 8
436900 8 | | 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3
3
7
5
0
8
7 | 2
600 N
600 N | N N N N N N N N N N N N N N N N N N N | 2
1200 N
400 N | | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | GW
0.2 | GW
02
02 | 02
02
02
03 | BOTH
02
02 | | 0 0 000 | 0 00 | 5 AG
70
70
70 | AG
0
1 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 | | 15 5 15 15 15 15 15 15 15 15 15 15 15 15 | | 9/85
7
7 | 9/85
140
141 | 4/87
14
14
14
14
14 | 8/8/ | | 00000000000000000000000000000000000000 | 240
900
900
900
900
1600
180
132
132
132
132
400
400
300
400
400
400
400
400
400
400 | 26
80
90
75 | 26
200
200 | 260
200
200
200
200
200
200 | 26
30
110 | | | | 000.000.0000000000000000000000000000000 | 12.00 02
12.00 02
12.00 02 | 30.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | 273.23 02
10.00 02
6.00 02 | | 22222222222 | 172 02
172 02
172 02
172 02
172 02
172 04
172 04
172 04
172 04
172 04
172 04
172 04
172 04
172 04 | 27.2 | 03
171 02
171 02 | 03
171 02
171 02
171 02
171 02 | 03
156 01
156 07 | | 600227-
600227-
600227-
600227-
600227-
600227-
600227-
600227- | 2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227
2600227 | 28 29.70
2600228-
2600228-
2600228- | 229 144.00
2600229-8
2600229-9 | 230 360.00
2600230-3
2600230-4
2600230-5
2600230-6
2600230-7 | 235 742.36
2600235-7
2600235-8 | | | 168 | 26002 | 26002 | 26002 | 26002 | | | | | | , | | | | | |-------------------------------------|---|--|---|---|---------------------------------------|--|--|--| | | .85 | 3,85 | 88. | .50 | . 83 | . 85 | 0.85
ALY,
ABELLE | . 50 | | | 30 0 | 212 0 | 0 088 | 175 0 | 52 0 | 0 6 | S ONI
ONI
LAB | 12 0. | | | | 0 | σ | | | | | 12 | | | 15 | 15 | %
% | 56 | 15 | 26 | 6.8 15 402
FREEZE PROTECTION
OBTAINED FROM THE
TRICT
OUND IN PERMIT FIL | 5 6 | | | ~ | 5 | | | | | SEE TINE IN | | | | 0.8 | н
г. | ©
• | 0.8 | 1.5 | 0.8 | | 0.8 | | | 13 | 13 | 133 | 61 | . 13 | 13 | 13 NOTE: WELLS ARE FOR IRRIGATION WATER IS PRIVATE DRAINAGE DIS WELL LOCATIONS NOT F | STRAND DIVISION 61 | | | 04 | 0 4
0 4 | | 001 | 0.4 | 03 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | LVER S | | 873200 SW
862000 SW
863400 SW | H. HIERS
877438 GW
877427 GW
876750 SW | F. KEENE
810785 GW
810508 GW
810388 GW | 2ARTNERS LTD.
707526 GW
707535 GW
707792 GW
704779 GW
704754 GW
703439 GW
703439 GW
703439 GW
703439 GW
703407 GW | 6 LEWIS
711572 GW
709330 GW
710581 GW
711174 GW
712297 GW | HARRELL
0 883000 GW
0 883040 SW | CITRUS NURSERY
151 866761 GW
177 867758 GW | CW C | COLLIER - SIL
5 764590
9 761625 GW | | 434550
439100
·441000 | 1 HERBERT
338000
337062
337375 | CHARLES
357584
358993
361673 | CITRUS
PA
435955
437294
437294
437294
437308
434403
435926
437331
435803
437238 | BLOCKER
433166
433200
435545
436456 | 1 M. R. HA
348980
349700 | USSC CIT
519351
519377 | BOB PAUL | BARRON C
416815
417909 | | 15000 N
15000 N
15000 N | 360 N
446 N | 3
400 N
400 N
N N | 10000
10000
10000
10000
10000
10000
10000 | 8 8 8 8 8 8 8 8 8 8 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 9 8 8 9 | 1
50 N
950 N | 2
300 N
200 N | X X X X X X X X X X X X X X X X X X X | 2 Z
T | | | вотн | G₩
02
02 | 0000000000000000000000000000000000000 | 001
01
01
01 | вотн | M.O. | вотн | æ | | | AG | AG
-15
-15 | . | A G | AG | AG | AG | AG | | | 4/87
85
85 | 10/87
150
150
150 | 3/86
40
40
40
40
40
40
40
40
40
40 | 5/87
30
30
30
30 | 2/87 | 787
112
112 | 787
150
150
150
150
150
150
150 | 787 | | | 9 9 9 5 6 | 26 1
200
200
200
200 | 260000000000000000000000000000000000000 | 26
50
50
50
50 | 26.1
150 | 26 2
145
145 | 26 7
200
200
200
200
200
200
200
200 | 26 7
61
47 | | | 02
02
02 | 0000 | | | | | | | | | .169
6.00
6.00 | 35.89 0
6.00 0
8.00 0
6.00 0 | 148. 97
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | 30.5
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02 | .296 02
6.00 02 | 3.44 02
6.00 02
10.00 02 | 12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | 186.51 02
10.00 02
8.00 02 | | 156 01
156 02
156 02 | 169
6.0
6.0 | 5.89
6.00
8.00
6.00 | 18.97
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00 | 8.00 0
8.00 0
8.00 0 | 296 0
6.00 0 | .44 0
6.00 0
10.00 0 | 2.00 0
2.00 0
2.00 0
2.00 0
2.00 0 | 86.51 0
10.00 0
8.00 0 | | 55
56
56 | 03 .169
54 01 6.0
54 01 6.0 | 03 35.89
72 01 6.00
72 02 8.00
72 02 6.00 | 03 148.97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 03 30.5 0
07 01 8.00 0
07 01 8.00 0
07 01 8.00 0 | 03 .296 0
35 01 6.00 0
35 01 | 3.44 0
58 01 6.00 0
58 02 10.00 0 | 54 02 12.00 0
54 0 | 03 186.51 0
91 01 10.00 0
91 01 8.00 0 | | | | 50 0,50 | 25 0.50 | 2162 0.85
FILE | |-----|--|---|---------------------------------------|--| | | | 6 13 |
 | ERMIT | | . • | | 7 | N | N N P P | | | | 0.8 | 0.8 | FOUND . | | | | 09 | 13 | 13
10
10
11
11
11
13 | | | | |
Vγ | WELL LOCATIONS | | | 03
03
03
01
01
01
01 | 01
01
01
01
01 | FARMS
01
01 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 763918 GW
763533 GW
761649 GW
764886 GW
765501 GW
765877 GW
764665 GW
764019 GW
762726 GW
762726 GW
762726 GW
762726 GW | ENTERPRISES
765877 GW
764665 GW
764019 GW
762346 GW
761568 GW
7615693 GW
765693 GW | THA - M & H
706419 GW
707662 GW | | | • | 419180
422627
424945
424942
425405
419105
420365
420596
421775
421814
422523 | COLLIER
419105
420365
420366
415976
411813
411684
415681 | R. A. BE
427769
428351 | 2 ALICO | | | Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | 2222222
\$\pi\$ | 000
N N
N N | | | | | | ထာထ | н 222222222222222222222222222222222222 | | | | CM | M.S | TOS | | | | 12/88 AG | 7/87 AG
42
42 | 7/87 AG | | | 882
882
70
82
70
82
82
82
82
82
82 | 26
60
52
52
50
61 | 555 | 2220
2220
2220
2220
2220
2220
2220
222 | | | 8 .00 02 02 05 05 05 05 05 05 05 05 05 05 05 05 05 | 285.64 02
6.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02 | 35.97 02
6.00 02
8.00 02 | 366.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
1 | | | 192 01
192 01
192 01
192 01
192 01
192 01
192 01
192 01
192 01 | 03
192 01
192 01
192 01
191 01
191 01
191 01 | 03
207 03
207 01 | | | | 2600266-129
2600266-131
2600266-131
2600266-133
2600266-133
2600266-134
2600266-77
2600266-79
2600266-80
2600266-80
2600266-81 | 1346.06
2600267-77
2600267-78
2600267-79
2600267-14
2600267-15
2600267-16
2600267-18 | 97.74
2600270-92
2600270-93 |
944.42
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271-
2600271- | | | | 2600267 | 0170097 | 2600271 | | | | | | | | , | | | | | | | |--|---|---------------------------------------|--|--|---|---| | | 15
15 | 15 | 15 | 13.55 | 15 | . 15 | | | 0.8 | 0.8 | 8 | 8.0 | 0.8 | 8 | | | 13 | 13 | 13 | 13 | 13 | 13 | | | | | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TER
04
01
04 | 04 | 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 4
0 4
0 4
0 4 | 0 4
0 4
0 4
0 4
0 4
0 4 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | & CAROL RUTT
847251 GW
847213 GW
846186 GW | KELLY
16 881877 GW
55 881618 GW | CORPORATION
813190 GW
811812 GW
810550 GW
808882 GW | PLANT WORLD
839787 GW
840423 GW
838055 GW
837763 GW
835745 GW
835733 GW | GROVES
794070 GW
79217 GW
793542 GW
796690 GW
854351 SR
848999 SW | ORPORATION
796484 GW
796526 GW
795916 GW
796469 GW
793747 GW | | | XENNETH
362312
362585
363446 | JAMES KE
372806
372855 | TURNER C 338465 338080 339065 339268 | Labelle
373024
375047
373086
375418
373106
374854 | 2 GUTWEIN
337933
338011
341660
345252
399299 | TURNER C
323820
324721
321831
322958
322328 | | 1200
1200
1200
1200
1200
1200
1200
1200 | 3
760 N
400 N
760 N | 2
1000
1000 | 420 N
425 N
465 N
550 N
500 N | 1250 N
1250 N
1250 N
1250 N
1250 N
1250 N | 4
600 N
600 N
600 N
600 N
1000 N | 420 Y
415 Y
532 Y
426 Y
527 Y | | | 3E
0 | G.W. | 002
002
003 | 35
0 | BOTH
02
02
02
02 | 02
02
02
02
02 | | | 9/87 AG | 9/87 AG
120
120 | 10/87 AG
140
140
140
140
140 | 12/88 AG | 10/87 AG | 1/88 AG
120
120
120
120
120
120 | | 250
250
250
250
250
250
250
250
250 | 26
205
22
205
205 | 26
150
150 | 200
200
200
200
200
200 | 26
150
150
150
150
150 | 26
240
240
240
240 | 260
260
260
260
260
260
260 | | 12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | 17.14 02
10.00 02
10.00 02
10.00 02 | .254 01
10.00 02
10.00 02 | 86.34 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | 2.65
8.00 02
8.00 02
8.00 02
8.00 02
6.00 02
8.00 02
8.00 02 | 199.60 02
8.00 02
8.00 02
8.00 02
8.00 02 | 73.81 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02 | | 000000000000000000000000000000000000000 | 03
154 01
154 01 | 03
134 02
134 02 | 03
172 02
172 02
172 02
172 02
172 02 | 03
154 01
154 01
154 01
154 01
154 01
154 01 | 03
172 02
172 02
172 02
172 02
172 172 | 03
171 02
171 02
171 02
171 02
171 02 | | 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- 2600271- | 61.79
2600273-133
2600273-134
2600273-135 | 20.70
2600274-82
2600274-83 | 234.58
2600277-45
2600277-46
2600277-47
2600277-48 | 215.81
2600278-57
2600278-58
2600278-59
2600278-60
2600278-61
2600278-63 | 582.28
2600279-126
2600279-127
2600279-128
2600279-129
2600279-5W | 200.54
2600281-122
2600281-123
2600281-124
2600281-125
2600281-126 | | | 2600273
2600273 | 2600274 | 171 | 2600278 | 2600279 | 2660281 | 80 0.85 33 0.50 45 0.85 510 0.85 476 0.85 436 0.85 1179 0.85 | | 1120 0.85 | 127 0.50
78 0.50 | 95 0.85 | 34 0.85 | 2816 0.85 | |----|--|---|---|---|--| | | 26 | 15 | 15 | 1.5 | 56 | | | 8.0 | 0.8 | 0.8 | 1.5 | 8
• | | | 13 | 13 | 13 | 13 | 13 | | ·· | SSC - DEVIL'S GARDEN CITRUS NORTH 471357 763117 GW 03 471064 774229 GW 03 473370 774329 GW 03 471125 776488 GW 03 471157 779119 GW 03 4711100 781556 GW 03 471100 781556 GW 03 470642 784815 GW 03 470642 784815 GW 03 | SCAR TORRES
434675 876841 GW 01
SW | . C. & C. M. PERRY
421300 881000 GW 01 | ACKIE D. CORBITT
324955 871486 GW 04 | OLLIER ENTERPRISES - CROW'S NEST
438418 758983 GW 03
438418 758970 GW 03
440018 757570 GW 03
440018 757510 GW 03
441390 758845 GW 03
441400 758845 GW 03
441418 757692 GW 03
445540 751806 GW 03
43551 746328 GW 03
445642 75800 GW 03
445642 75819 GW 03
445642 76007 GW 03
445642 76047 GW 03
422523 764387 GW 03
422523 76438 GW 03
422523 764492 GW 03
421315 763462 GW 03
431315 763462 GW 03
431315 763462 GW 03
431315 76326 GW 03
4431318 76550 GW 03
4431318 76550 GW 03
4431318 76550 GW 03
4431318 76550 GW 03
4444208 76521 GW 03
4444208 76521 GW 03 | | | 11
6000
6000
6000
6000
6000
6000
6000
6 | 1 Y OS | T T 1 879 N 878 | 1 JA
150 N 3 | 4. | | | M G | BOTH
01 | M G M | ¾ | 3 O | | | 26 12/87 AG
100 60
100 60
100 60
100 60
100 60
100 60
100 60 | 26 12/88 AG
25 18 | 26 3/88 AG
35 | 26 4/88 AG
100 65 | 26 1/89 AG
49 48
49 48
49 49
50 50
50 50
60 60
60 60
60 60
60 60
60 60
61 60
6 | | | 189.60 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02 | 36.68 02
8.00 02 | 16.08 03
10.00 02 | .192 01
6.00 02 | 8.00 02
8.00 02 | | | 03
193 02
193 02
193 02
193 02
193 02
193 02
193 02
193 02
193 02 | 03
156 01
156 | 03
137 01 | 03
153 01 | 03
192 01
192 01
192 01
192 01
192 01
192 01
192 01
193 01
193 01
194 01
195 01
197 01
197 01
197 01
198 01
198 01 | | | 282
515.15
2600282-200
2600282-201
2600282-202
2600282-203
2600282-204
2600282-205
2600282-205
2600282-205
2600282-205
2600282-205
2600282-205
2600282-207
2600282-209 | 293 163.77
293 2600293-9
2600293-SW | 294 43.70
2600294-14 | 297 15.64
2600297-52 | 300 1294.31
2600300-37
2600300-39
2600300-40
2600300-41
2600300-41
2600300-44
2600300-44
2600300-44
2600300-49
2600300-49
2600300-49
2600300-49
2600300-49
2600300-88
2600300-87
2600300-87
2600300-87
2600300-87
2600300-87
2600300-87
2600300-87
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90
2600300-90 | | | 26002 | 2600; | 26002 | 26002 | § 172 | ``` 8.0 0.8 ö 13 13 'n S. GROVES 871798 GW 872325 GW S S 3 8 35 35 30 80 G SK S S S S 3 S S 88888 S S 9 766080 765338 765994 765545 764181 762961 763108 762843 765174 762376 762257 836300 836500 833330 836500 827400 830100 831900 831900 822500 823100 827600 764017 765316 840400 830000 762996 764697 762384 762336 367886 846218 764241 765175 840100 826400 823900 834300 833600 833400 826000 826800 818900 830400 830800 837800 MADDOX GROVE WITT BROS. 451818 448966 448508 451571 451842 454251 456946 454105 454727 456409 458707 441715 438383 ALICO 415400 415400 414800 433174 412900 409800 410100 406100 404900 406700 413700 415400 409300 411100 410700 406300 438666 431836 434626 433003 415600 430987 415500 410000 405900 427971 405100 > z z z 1400 1400 1400 1400 1400 1400 800 BOTH 3 AG Ą 88/8 8/88 25 61 00011000 100 02 02 02 02 18.28 8.00 6.00 12.00 00. 12.00 12.00 12.00 11.93 9.00 8.00 12.00 12.00 12.00 12.00 88.000 88.000 88.000 88.000 88.000 12,00 03 03 156 156 156 2600300-100 2600300-101 2600300-102 2600300-103 2600300-104 2600300-105 2600300-107 2600300-108 2600300-109 2600300-124 2600300-125 2600300-126 2600300-127 2600300-127 2600300-120 2600300-121 2600312-126 260315-24 260315-25 260315-26 260315-27 260315-28 260315-29 260315-30 260315-22 260315-24 260315-24 260315-25 260315-26 260315-27 260315-29 260315-29 600300-122 2600300-123 2600315-19 2600315-20 2600315-21 2600310-47 2600310-SW 2600315-31 2600315-32 2600315-31 2600315-32 2600300-99 2600310-46 2600315-C 2600315-D 2600315-E 2600315-B 459.95 32.43 49.68 2600310 2600312 2600315 173 ``` 0.85 1000 15 S 108 0.85 15 | | 700 0.85 | 30 0.85 | 40 0.85 | 12 0.75 | 249 0.85 | |------------------------|--|--|---|--|---| | | 5 | 15 | 15 | 15 | 15 | | | ж.
С | 0.8 | 8.0 | 8.0 | 0.8 | | | | 15 | 13 | 13 | 13 | | .· | | | | | GEORGE VALDEZ (SANTA BARBERA RANCH) 426778 883458 GW 03 427152 881683 GW 03 430318 881274 GW 03 430718 883773 GW 03 | | | 00000000000000000000000000000000000000 | 03 | 04 | 0 4 | A BAR
03
03
03
03 | | 824100 SW
841100 SW | 2.
850251 GW
852703 GW
852732 GW
849935 GW
849955 GW
848511 GW
848511 GW
848640 GW
849640 GW
849640 GW
84960 GW | CHESTER WINN
19 866764 GW
13 866712 SW | SIMMONS
840858 GW
842308 GW | s
798706 GW
798893 GW | ALDEZ (SANT
883458 GW
881683 GW
881274 GW
883773 GW | | 412000 | AGRO, INC
463684
461221
463090
460643
461782
460311
461687
464335
468498
468498
468295
468295 | 1 JAMES CHI
426439
426643 | MAYNE H.
355614
356102 | ABC FARMS
364625
364647 | GEORGE V
426778
427152
430318 | | 4500 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1
900 N
2000 N | 2
450 N
450 N | 2
800 N
800 N | 875 N
875 N
875 N
875 N | | | MO | вотн | МS | GW
02
02 | M.S | | | 9/88 AG | 9/88 AG | 10/88 AG | 12/88 AG
140
140 | 1/89 AG
80
80
80
80 | | | 20
21
21
21
21
21
21
21
21
21
21
21
21
21 | 26 | 26
250
250 | 26
200
200 | 26
135
135
135
135 | | | 118.50 02
10.00 02 | 4.5 01
6.00 02 | .266 01
10.00 02
10.00 02 | 2.4 02
12.00 02
12.00 02 | 42.05 02
10.00 02
10.00 02
10.00 02 | | 02 | 157 01
157 02
157 02
157 02
157 02
157 02
157 02
157 02
157 02
157 02
157 02 | 03
156 02
156 02 | 03
154 02
154 02 | 03
172 01
172 02 | 137 02
137 02
137 02
137 02 | | 2600315-J
2600315-N | 318 321.97
2600318-27
2600318-29
2600318-29
2600318-30
2600318-33
2600318-33
2600318-33
2600318-35
2600318-35
2600318-35
2600318-35
2600318-37
2600318-37
2600318-37
2600318-37
2600318-37
2600318-37
2600318-37 | 600320 29.90
2600320-45
2600320-SW | 322 18.40
2600322-121
2600322-122 | 325 6.52
2600325-132
2600325-133 | 327 114.50
2600327-10
2600327-11
2600327-12
2600327-13 | | | 2600 | 2600 | 174 | 2600 | 2600; | . - . | LINE 1 HE | HEADINGS (Table | e 1 - Exis | Existing Wat | Water Use | # - I | ermit Info | Information | | _====
Tabl | e 2 - | Forcasted | ll l | icu | for | ach | =======
Permit) | | | |--------------------------------------|--|----------------------------|----------------|-----------|-------------|---------------|-------------|-------------------------------|---|--|------------------------|------------------|--|--------------------------------|--|--------------------|------------------|------------| | . | AN.
ALL.
================================= | ALL
UNT
UNT | . MAX | | DA
CO IS | E USE
TYPE | 1 5 1 | ולי א
ו יו איי
ו יו איי | SW
PMPS OV |
 | |
 }: | | CROP
TYPE | ii | RAIN | S | IRR
EFF | | [-] II | GS (Ta | 1 .i | Existing Water | | Use - F | aciliti | ဖ | mart I | on f | ایما | ermi |

 | | b

 | |
 | | 7 | | 법
4
급 | FACILITY
NUMBER | STS | ! ii | PTH | | | PUMP | PUMP
CAP. | T | | | RC
C | AQ. COMMENTS | | | | | | | 800002
800002
800002
800002 | 29930.4 | | . #£ | l | /6 8 | 1 1 | | 62 | ABC
Onl | a in | of permi | F F E | ====================================== | 61 = 53 | # # 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 15 = 15 | 4615 0
1500 0 | | | | 0800002-68
0800002-69
0800002-70 | 152 01
152 01
152 01 | 6.00 | | 105 | | 600 | N 009 | | യയ | 77376 G | | 4. 4. 4 | 2 | | <u>?</u> | - | ņ | | | 0800002-71 | 222 | 6.00 | 200 | } . | | 03 | 400
N N | | | | 000 | ታ ሀ ሆ | | | | | | | 175 | 0800002-74 | 22 | 6.00 | | 900 | ٥ | 500 | . 450 N | . • • • • | | | | סי פי (| | | | | | | | 0800002~85
0800002~85 | 34. | | | | , 0, 0 | 60 6 | | 3378 | | | 6 65 65
65 65 | יח מי | | | | | | | | 0800002-87 | 34 | 8.00 | 202 | | 202 | 03 | | 3453 | | 890459 G
894616 G | | റെ നെ ന | | | | | | | | 0800002-89 | 34 | | | | 0. | 03 | | 3434 | | | | י רח ל | | | | | | | | 90 | | | | ł | | 888 | | 3484 | | | | | | | | | | | | 0800002-93 | 40.0 | | 05 | | | 03 | | 17 | | | GW 01 | 7.6 | | | | | | | | 0800002-94
0800002-95 | 134 01
134 01 | | 4 | 09 | | 03 | 009
900 X | 4 4 | 7852 8
8095 8 | 899014 G | GW 0] | | | | | | | | | 0800002-96
0800002-97 | 134 01 | | | 40 | | 03 | 350 N | 4.4 | | | | ı Mı | | | | | | | | 0800002-98 | | | | 40 | | 22.0 | 400 N | 3460 | | | GW 03 | n m | | | | | | | | 0800002-100 | r sr | | | 30 | | 3 6 | | 346U
3478 | 6009
7827
9(| 90346/ GW
901567 GW | | in the | | | | | | | | 0800002-101
0800002-102 | 134 01
134 01 | 8.00 | - | 45 | | 03 | 400 N | < | | 0 [| | | | | | | | | | 0800002-103 | 134 01 | | | 45 | | 03 | | . 4. | | | |) . | | | | | | | | 0800002-105 | r sr | | 9 | 30
600 | | 3 6 | | 7 7 | | 905746 GW
903753 GW | | m | | | | | | | | 08000002-106
0800002-107 | 134 01 | | 02 | | | 03 | | 3420 | | | W 05 | r. | | | | | | | | 7 | | | | 26 | | 03 | | 3418 | | 902263 GW | M 01 | 1 | | | | | | | | 0800002-109
0800002-110 | 134 01
134 | 8.00 | | 70
45 | | 03 | 350 N | 342282 | | 902243 GW | W 01 | | | | | | | | | -11 | 134 01 | | | 3. de 2. | | 03 | | 3426 | | 2143 | | n m : | | | | | | | | | - ST S | 30.0 | 200 | 27 | | 500 | 000 N | 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 22 | 65.63
5.65 | TO 3 | 1.6 | | | | | | | | 1 - 70000 | _ | 20. | 70 | | | £0 | | ∞ | ~ 1 | 16043 GW | | | | | | | | | • | 26 | 56 | 15
15
15
15
15 | 56 | |--|------------------------------------|---|--|---| | | 8.0 | 8.0 | 8 8 8 9
 | 8.0 | | | 13 | 15 | 15
13
61
01 | 113 | | | * •• · | | | | | 000
000
000
000
000
000
000
000
000
00 | 04 | 003
033
033
033 | 00
00
00
00
00
00
00
00
00
00
00
00
00 | 033 | | 905824 GW
905101 GW
905101 GW
902658 GW
902470 GW
911751 GW
911175 GW
90198 GW
907285 GW
907285 GW
906825 GW
907262 GW
907262 GW
907262 GW
907262 GW |
OVES
781673 GW
780947 GW | OMAS
749868 GW
749919 GW
748299 GW
747837 GW
747837 GW | 773824 GW
773484 GW
773257 GW
775061 GW
773880 GW
773292 GW | CE, J
1081
1084
9995
9758 | | 337519
340017
340010
3390109
3399109
339911
340770
3421719
343165
344524
34526
34530
34591
346591
346591
346591
346591
346591
346591
346591
346591
346591
346591 | BERRY GRC
352585
352604 | C. A. TH
39188
390353
391436
391943
392450
391213 | 355429
356726
352997
352833
352833
353636
354373
35641 | HN E.
92838
94768
91809
92928 | | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2
250
250 | ~ | 650
60
90
90
150 | 6
1200
1200
1200
1200 | | m m m m m m m m m m m m m m m m m m m | 36 | M O | 8 0 | GW | | 20 | /87 AG | AG TT/ | /87 AG | 1/78 AG | | 33
33
33
33
33
33
33
33
33
33
33
33
33 | 11 8
175
175 | 11 7 | 24 4 4 100 100 100 100 100 100 100 100 10 | 11 (| | | 022 | 00000000 | 2 0000000000000000000000000000000000000 | | | | 42.75 | 49.5 | 47.38 | 8 8 8 8 8
5 5 5 5 5 | | 134 01
134 01 | 03
190 01
190 01 | 03
191 01
191 01
191 01
191 01
191 01
191 01 | 190 01
190 01
190 01
190 02
190 02
190 02 | 0000 | | 0800002-115 0800002-116 0800002-119 0800002-119 0800002-120 0800002-122 0800002-124 0800002-125 0800002-125 0800002-126 0800002-127 0800002-128 0800002-128 0800002-128 0800002-138 0800002-138 | 116.14
1100003-17
1100003-18 | 163.57
1100007-111
1100007-112
1100007-113
1100007-114
1100007-115 | 1100024-14
1100024-15
1100024-16
1100024-304
1100024-305
1100024-306
1100024-307 | .72
.00035-85
.00035-86
.00035-87
.00035-88 | | | 17600011 | 007 | 1100024
1100024
1100024
1100024 | 1100034 | 149 0.50 240 0.50 115 0.50 70 0.50 20 0.50 40 0.50 240 0.50 | | | | | | | | | | | | | | ٠ | | | | | | | | | | | |--------------------------|---------------|-------------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|-----------------|----------|----------------------|----------------------|---|---------------------|---|-----------------------|-------------------------------------|----------|----------------------------------|----------------------------------|----------| | | 450 0.50 | | | | | | | | | | 365 0.85 | | | | | 40 0.85
198 0.50 | | 140 0.75
1080 0.75 | | | | | | | | 26 | | | | | | | | | | 26 | | | | | 26 | | 26
26 | | | | | | | | 9.6 | • | | | • | | | | | | 8 8 | | | | | 8.0 | i | 8.0 | | | | - | | | | 61 |)
1 | | | | | | | | | 13 | | | | | 13 | | 12 | | | | | | | 03 | | 800
800 | | | | | | | | | 03 | 03
03 | 03
03 | 03
03 | 00333333 | | 03
03
03 | ROVE DIVISION | 03
03 | 04 | 003 | 003 | 03 | | 718816 GW
735748 GW | PRICE, JR. | 709836 GW
710624 GW
710615 GW | 3205 GW
3269 GW | 0046 GW
8086 GW | 1069 GW
9977 GW | 1118 GW
5673 GW | 9368 GW
0809 GW | 1243 GW
8685 GW | 8518 GW
1411 GW | 2155 GW
8547 GW | OWN
89943 GW | MD 70008 | 88503 GW
85891 GW | 86130 GW
86697 GW | | GROVES | 691470 GW
691470 GW
691470 GW
691470 GW | COMPANYGR | 733050 GW
733050 GW
733050 GW | 33050 GW | 32000 GW | 30700 GW
30700 GW | 36700 GW | | 394896
379078 | JOHN E. | 405012
393716
394763 | 9760
9963 | 8707
8694 | 8932
9039 | 9054 | 0254
9773 | 9992
0036 | 9811
9894 | 9968
9737 | 1D C | 929 | 142
355 |)42
 18 | 349/20
347523
347666 | н. т. н. | 526200
526200
526200
526200
526200 | O COLLIER | 409800
409500
408650 | 0840 | 0640 | 365
865
785 | 0620 | | 1200 | 19 | 400
600
600 | 600 | 00 | 20 | 20 | 20 | 20 | 1200 | 20 | 11 | | LC) | SON | 350
350
350 | ស | 8000
8000
8000
8000
8000
8000 | 47 | 1000 N
1000 N
1000 N | 400 | 200 | 200 | 00 | | | 11 1/89 AG GW | 00
001
001 | 00 | 0 | 0 | \circ | 00 | 00 | 00 | 00 | | 02
02 | | | 02
02
00
00 | 11 5/78 AG GW | 83 65
103 72
83 65
100 65
100 65 | 11 11/84 AG GW | 80 22 03
80 22 03
80 22 03 | 190 | ວ ເ
ພຸຊຸເ
ຍາຍ ແ | 0 20
0 197 | 30 | | 8.00 02
8.00 02 | 98.91 02 | 4.00 02 1
6.00 02 1
6.00 02 1 | .00 02 | .00 02 | .00 02 | 00 02 | .00 02 | .00 02 | 8.00 02
2.00 02 | .00 02 | 00 00 | .00 02 | .00 02 | .00 02 | 8.00 02 1
8.00 02 1
8.00 02 1 | | 8,00 02
8,00 02
8,00 02
8,00 02
8,00 02 1 | 200.27 02 | 8.00 02
8.00 02
8.00 02 | 8.00 02 | 38.8 | 5.00 02 | 000. | | 206 01
206 01 | 03 | 206 01
206 03
206 01 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 2 | 22 | 72 | 06 | 190 01
190 01
190 01 | 03 | 224 01
224 01
224 01
224 02
224 02 | 03 | 206 01
206 01
206 01 | 0 90 | 0 90 | 0 90 | 0 90 | | 1100035-90
1100035-91 | 344.68 | 1100035
1100035
1100035 | 100035-1 | 100035-1 | 100035-1 | 100035-1 | 100035-1
100035-1 | 100035-1
100035-1 | 100035-1
100035-1 | 100035-1
100035-1 | 136.52 | 100036 | 100036-9 | 100036-9 | 1100036-11
1100036-12
1100036-13
1100036-259 | 51.8? | 1100037-1
1100037-2
1100037-3
1100037-4
1100037-5 | 849.00 | 222 | 100042-5 | 100042-5
100042-5
100042-5 | 100042-5
100042-5
100042-5 | 100042-5 | | | 1100035 | | | | | | | | | | 1100036 | 177 | | | | 1100037 | 7 | 1100042 | | | | | | | | | 1.5 | 15 | 15 | 15 | 15 | 1.5 | |--|--|---|--|--------------------------|--|---------------------------|---------------| | | | 8.0 | 0.8 | 0.8 | 8.0 | 0.8 | 0.8 | | | | 2 | 13 | 13 | 15 | 13 | 13 | | | | | | | | | | | | ć | | | • | | | | | 00000000000000000000000000000000000000 | 0003333333444 | 0000000 | LLINS
04
03
04 | 04 | 0 0 0 0 0 0 0 4 4 4 4 4 | 03 | | | M | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | ROLI
GW
GW | 35 | 35 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | CE
GW | ۲.
ان | | 731000
731000
731000
730600
728400
728300
728300
727000
727000 | 725600
725600
725600
731950
731950
730800
730800
732700
732700
732700 | NSON, JR
777393
778673
778708
779305
776704
776704 | £ RENEE
784924
784945 | SATH
783831 | ORTSON
770286
770858
770831
770264
768807 | DURRANC
783014 | LEINWEBER | | 406200
404200
401200
401200
409600
409600
407900
406500
406500 | 409600
408150
405500
410150
410150
410400
410400
410400
410400
406800
409400
409400 | E.L. JOH
35644
356787
357257
357600
357572
357601 | 352621
354086
352517 | SAM E. HE
352596 | GEORGE FY 346824 343828 343336 3335589 | WILLIARD
355570 | WILLIAM | | | ZZZZZZZZZZZZZZZZ | T- C | m 00 | | 10.0 | | | | 00000000000000 | 5000
10000
10000
10000
10000
12550
12550 | 1200 | 3
250
350 | 500 | 1500 | 500 | 1 | | | | % | GW | 3 5 | 3 5 | ΘW | GW | | 2000
240
240
58
33
33
212
20
20 | 200
200
333
333
333
333
333
333
333
333 | 7/78 AG | .0/78 AG | .2/78 AG | 12/78 AG | 2/78 AG | 2/78 AG | | 300
290
290
65
65
120
75
75 | 00000000000000000000000000000000000000 |
200
200
200
200
200
200
200 | 11 3
240
65 | 11 : | 11 | 11 | 11 1 | | | 222222222222222222222222222222222222222 | 002 | 02 | 0.2 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0.2 | | | | 8 | 8.00
.00
.00
.00
.00
.00
.00
.00 | 6.00
8.00
6.00 | 8.00 | 8.00
8.00
8.00
8.00 | 8.00 | | | 000000000000000000000000000000000000000 | 001111000111100011 | 03
01
01
01
01 | 03
01
02 | 02 | 003 | 03 | 03 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 190
190
190
190
190
190 | 190
190
190 | 190 | 190
190
190
190
190 | 190 | | | | | | | | | | | | 000042-1-000000042-1-0000042-1-000042-1-000042-1-000042-1-0000042-1-00042-1-00042- | 1100042-71
1100042-71
1100042-73
1100042-74
1100042-75
1100042-75
1100042-80
1100042-81
1100042-81
1100042-83 | 56 34.86
1100056-2
1100056-3
1100056-4
1100056-5
1100056-6 | .00068 21.73
.00068
1100068-37
1100068-38
1100068-39 | 00081 8.70
1100081-29 | 1100082 635.3/
1100082-31
1100082-32
1100087-33
1100082-35
1100082-35 | 100083 8.70
1100083-28 | 1100088 15.22 | 155 0.50 50 0.80 50 0.50 40 0.50 1100 0.50 70 0.50 40 0.50 | | 15 | 15 | 15 |-----------------|--|---|--|---|--|---|--|---|--|--|--|---|---------------------------------|---|---|--|---|---------------------------------|--|---------------------------------|--|--|---| | | ∞. | œ
• | ss. | * | | | 0 | 0 | 1 | 13 | 13 | E = 3 | , | 0 0 | 7 01 | 1 01 | | 0000 | .2 GW | JR.
74 GW | .5 GW | TION
O GW
10 GW
10 GW | | | 000 | 85 85
0 0 0 | 0.0 | 000 | 00 | 85 65 65
0 0 0 0 | 000 | 000 | 500 | 000 | 50 | 80 O | 50 GW | _ | 00 GW | | 00 GW | 00 | | 8385 | A,
840 | 30UGH
78471
78442 | RPERATI
783200
783800
784500 | 8615
8570
8505
8505 | 8620
8240
8455 | 0.0 | _ ~ .0 | ~ ~ | O 1 10 m | ET 20 | 8055
7915 | T 10 0 | 0.00 | Y) ET (| VI O V | ດທ | _ | ^ ^ | J - O | Oi C | _ ~ | <+ (C | > m | | F 71 | ETHE | ose
3
2 | O | 15163 | A. B | 34840
34932 | TURNER C
342000
242100
342150
341600 | 3800
4215
4215
4153 | 4230
4370
4365 | 4480
4490
4625 | 4710
4360
4250 | 4370 | 4480
4595
4380 | 4390
3960 | 3960
4190 | 4200 | 4195 | 4070 | 3905 | 3810 | 4250 | 4620 | 4315 | 4315 | 4150 | 4390 | 0965 | | М | ж
Э | ည္ကက | ы
13
13
13
13 | мммм | ്നനന | ттт | m m m | i m m | ммм | ММ | mmr | יותוני | nene | ירחרי | יח פי | רו רו | m 6 | ים ניים ו | וחו | ന | רח ריי | en e |) m m | | 00 | T 0 | 7 <u>0</u> | 53
600
600
600 | 009 | 009
000
900 | 000 | 00 | 00 | 000
000
000 | 00 | 00 | 900 | 909 | 000 | 2 9 9 | 2 9 | 0 0 | 0 9 | 2 0 | 0.9 | 2 9 | 0 0 | 650
650 | | _ | 9 | 0 | | 0 | | 000 | 00 | \circ | 000 | 00 | 0,0 | 200 | 201 | 200 | 201 | 3 2 | 20 10 | | | | یا ب | C) 15 | , 41, 41 | | S | 2 | 2 | | v | ত ক ত | 10
10
10
9 | 9 9 | 10 | ••• | 89 | 60 (| | | | ~ ; | 7 % | <u> </u> | | 9 | | 9 9 | ω ν | 9 60 6 | | ı, | 3 5 | GW 5 | BOTH 6 | v | Ø 16 Ø | 0
1
0
0
0 | | 10 | | 89 | 6, 4 | | | | * H | 20 | | | y vo | | ο | ω v | | | L) | AG GW | | | v | | ₽ ₽ | - | 1 | | | | | | | rt 1 | 7 | • | | | - | | | | | S | 35 | M5 | вотн | 100 6 | 140
40
50 | 138 1
135 1
250 | 000 | 135
208 | 40
238
168 | 172
40 | 0 0 4 4 | 0.00 | 000 | 044 | 174 | 180 I | 40 | 40 | . 04 | 40 | 40 | 172 | 235 . | | S | AG GW | 2/78 AG GW | /87 AG BOTH
40
40
40
40 | 00 | | 138 1
135 1
250 | 000 | 135
208 | 40
238
168 | 172
40 | 0 0 4 4 | 0.00 | 000 | 044 | 174 | 180 I | 40 | 40 | . 04 | 40 | 40 | 172 | 235 . | | 02 5 | 12/78 AG GW | 12/78 AG GW | 1/87 AG BOTH
40
40
40
40 | 160 100 | 260 140
60 40
80 50 | 215 138 1
195 135 1
300 250 | 60
60
60
60
60
60
60 | 195 135 1
269
208 | 60 40
290 238
275 168 | 275 172
. 60 40 | 60
60
40
60 | 60 40 | 60 40 | 60 40 | 236 174 1 | 185 180 1
235 167 2 | 60 40 | 60 40 | 40 | 60 40 | 60 40 | 275 172
275 240 | 270 235
260 223 · | | 00. | .00 02 11 12/78 AG GW | .00 02
.00 02 | 36 02 11 1/87 AG BOTH .00 02 60 40 .00 02 60 40 .00 02 60 40 | 02
02 160 100
02
02 | .00 02 260 140
02 60 40
.00 02 80 50 | .00 02 215 138 1
.00 02 195 135 1
.00 02 300 250 | .00 02 60 40
.00 02 60 40
.00 02 60 40 | .00 02 195 135 1
.00 02 269 208 | .00 02 60 40
.00 02 290 238
.00 02 275 168 | .00 02 275 172
.00 02 .60 40 | .00 02 60 40
.00 02 60 40 | .00 02 60 40 | .00 02 60 40
.00 02 60 40 | .00 02 60 40
.00 02 60 40 | .00 02 236 174 1 | .00 02 185 180 1
.00 02 235 167 2 | 00 02 60 40 | 00 02 60 40 | .00 02 60 40 | .00 02 60 40 | .00 02 60 40
.00 02 60 40 | .00 02 275 172 | 00 02 260 223 . | | | 0 02 11 12/78 AG GW | 11 12/78 AG GW
00 02
00 02 | 6 02 11 1/87 AG BOTH
00 02 60 40
00 02 60 40
00 02 60 40 | 00 02 160 100 02 02 02 | .00 02 260 140
02 60 40
.00 02 80 50 | 00 02 21 5 138 1
00 02 19 5 135 1
00 02 300 250 | .00 02 60 40
.00 02 60 40
.00 02 60 40 | .00 02 195 135 1
.00 02 269 208 | .00 02 60 40
.00 02 290 238
.00 02 275 168 | .00 02 275 172
.00 02 .60 40 | .00 02 60 40
.00 02 60 40 | 8.00 02 60 40 | .00 02 60 40
.00 02 60 40 | .00 02 60 40
.00 02 60 40 | .00 02 236 174 1 | .00 02 185 180 1
.00 02 235 167 2 | 00 02 60 40 | 00 02 60 40 | .00 02 60 40 | .00 02 60 40 | .00 02 60 40
.00 02 60 40 | 8.00 02 275 172 | 00 02 260 223 . | | 00. | .00 02 11 12/78 AG GW | .00 02
.00 02 | 8.00 02 60 40
0.00 02 60 40
0.00 02 60 40
8.00 02 60 40
8.00 02 60 40 | 02
02 160 100
02
02 | 8,00 02 260 140
. 02 60 40
8,00 02 80 50 | 8,00 02 215 138 1
8,00 02 195 135 1
8,00 02 300 250 | 8,00 02 60 40
8,00 02 60 40
8,00 02 60 40 | 8,00 02 19 5 135
8,00 02 26 9 208 | 12.00 02 60 40
8.00 02 290 238
8.00 02 275 168 | 8.00 02 275 172
8.00 02 .60 40 | 8.00 02 60 40
10.00 02 60 40 | 8,00 02 60 40
9,00 02 60 40 | 8.00002 60 40 | 8.00 02 60 40 | 8.00 02 236 174 1 | 8:00 UZ 183 18U 1
12:00 02 235 167 2 | 00 02 60 40 | 1 8.00 02 60 40 | 1 8.00 02 60 40 | 1 8.00 02 60 40 | 1 8.00 02 60 40
1 8.00 02 60 40 | 8.00 02 275 172 | 1 10.00 02 260 223 · | | 00.9 | 11 12/78 AG GW | 11 12/78 AG GW
6.00 02
6.00 02 | 03 576.36 02 11 1/87 AG BOTH
90 01 8.00 02 60 40
90 03 02 60 40
90 01 8.00 02 60 40
90 01 8.00 02 60 40 | 8.00 02 160 100
02
02 | 90 01 8.00 02 260 140
90 03 . 02 60 40
90 01 8.00 02 80 50 | 90 01 8.00 02 21 5 138 1
90 01 8.00 02 19 5 135 1
90 01 8.00 02 300 250 | 90 01 8.00 02 60 40
90 01 8.00 02 60 40
90 03 8.00 02 60 40 | 90 01 8,00 02 19 5 135 1 9 0 01 8,00 02 269 208 | 01 12.00 02 60 40
01 8.00 02 290 238
01 8.00 02 27 5 168 | 90 01 8.00 02 27 5 172
90 01 8.00 02 . 60 40 | 90 01 8.00 02 60 40 90 01 10.00 02 60 40 | 20 01 10 00 02 60 40 00 01 0 00 02 00 00 00 00 00 00 00 00 00 00 0 | 90 01 8.00 02 60 40 | 90 01 8.00 02 60 40 | 90 01 8.00 02 236 174 1 | 90 01 8.00 02 185 180 1
90 01 12.00 02 235 167 2 | 90 01 8 00 02 60 40 | 90 01 8.00 02 60 40 | 90 01 8,00 02 60 40 | 90 01 8.00 02 60 40 | 90 01 8.00 02 60 40
90 01 8.00 02 60 40 | 90 01 8.00 02 275 172 | 01 10.00 02 260 223 · | | 7 190 01 6.00 | 6 190 01 6.00 02 11 12/78 AG GW | 03 11 12/78 AG GW
4 190 01 6.00 02
5 190 01 6.00 02 | 35 190 01 8.00 02 60 40 35 190 01 8.00 02 60 40 37 190 01 8.00 02 60 40 37 190 01 8.00 02 60 40 38 190 01 8.00 02 60 40 | 39 190 03 02
40 190 01 8.00 02 160 100
41 190 03 02
42 190 03 02 | 43 190 01 8,00 02 260 140 44 190 03 . 02 60 40 45 190 01 8,00 02 80 50 | 190 01 8.00 02 21 5 138 1 190 01 8.00 02 19 5 135 1 190 01 8.00 02 300 250 | 49 190 01 8.00 02 60 40 50 190 01 8.00 02 60 40 51 190 03 8.00 02 60 40 | 52 190 01 8,00 02 19 5 135 1
53 190 01 8,00 02 269 208 | 154 190 01 12.00 02 60 40
155 190 01 8.00 02 290 238
156 190 01 8.00 02 275 168 | 57 190 01 8.00 02 275 172
58 190 01 8.00 02 . 60 40 | 59 190 01 8.00 02 60 40 60 190 01 10.00 02 60 40 | 62 190 01 10.00 02 60 40 60 60 10 60 60 60 60 60 60 60 60 60 60 60 60 60 | 64 190 01 8.00 02 60 40 | 65 190 01 8.00 02 60 40 66 190 01 8.00 02 60 40 | 64 190 01 8:00 02 80 40 11 8:00 02 236 174 11 | 69 190 01 8.00 02 183 180 1
70 190 01 12.00 02 235 167 2 | 71 190 01 8 00 02 60 40 | 73 190 01 8.00 02 60 40 | 75 190 01 8.00 02 60 40 | 76 190 01 8.00 02 60 40 | 78 190 01 8.00 02 60 40
78 190 01 8.00 02 60 40 | 47 190 01 8.00 02 275 1 72 | 49 190 01 10.00 02 260 223 · | | -27 190 01 6.00 | 03 11 12/78 AG GW
91-26 190 01 6.00 02 | 03 11 12/78 AG GW
93-24 190 01 6.00 02
93-25 190 01 6.00 02 | 00 03 576.36 02 11 1/87 AG BOTH
94-135 190 01 8.00 02 60 40
94-136 190 03 02 60 40
94-137 190 01 8.00 02 60 40
94-138 190 01 8.00 02 60 40 | 94-139 190 03 02
94-140 190 01 8.00 02 160 100
94-141 190 03 02
94-142 190 03 02 | 44-143 190 01 8.00 02 260 140 44-144 190 03 . 02 60 40 44-145 190 01 8.00 02 80 50 | 34-146 190 01 8.00 02 21 5 138 1
34-147 190 01 8.00 02 19 5 135 1
34-148 190 01 8.00 02 300 250 | 94-149 190 01 8.00 02 60 40
94-150 190 01 8.00 02 60 40 ,
94-151 190 03 8.00 02 60 40 | 94-152 190 01 8,00 02 19 5 135 1
94-153 190 01 8.00 02 269 208 | 94-154 190 01 12.00 02 60 40
94-155 190 01 8.00 02 290 238
94-156 190 01 8.00 02 275 168 | 94-157 190 01 8.00 02 27 5 172
94-158 190 01 8.00 02 . 60 40 | 94-159 190 01 8.00 02 60 40 94-160 190 01 10.00 02 60 40 | 24-161 150 01 10:00 02 60 40 40 40 40 40 40 40 40 40 40 40 40 40 | 34-164 190 01 8.00 02 60 40 | 34-165 190 01 8.00 02 60 40 | 34-168 190 01 8.00 02 236 174 1 | 34-169 190 Ul 8:00 UZ 185 180 L
34-170 190 Ol 12:00 OZ 235 167 2 | 84-171 190 01 8 00 02 60 40 44-172 190 01 8 00 02 60 40 | 94-173 190 01 8.00 02 60 40 | 4-175 190 01 8.00 02 60 40 | 94-176 190 01 8.00 02 60 40 | 94-177 190 01 8.00 02 60 40
94-178 190 01 8.00 02 60 40 | 94-247 190 01 8.00 02 275 172
94-248 190 01 1 0 00 02 275 240 | 94-249 190 01 10.00 02 260 223 · | | 7 190 01 6.00 | 5.22 03 11 12/78 AG GW
100091-26 190 01 6.00 02 | 8.44 03 03 11 12/78 AG GW 100093-24 190 01 6.00 02 100093-25 190 01 6.00 02 | 100094-135 190 01 8.00 02 60 40
100094-135 190 01 8.00 02 60 40
100094-136 190 03 02 60 40
100094-137 190 01 8.00 02 60 40
100094-138 190 01 8.00 02 60 40 | 94-139 190 03 02
94-140 190 01 8.00 02 160 100
94-141 190 03 02
94-142 190 03 02 | 100094-143 190 01 8.00 02 260 140
100094-144 190 03 . 02 60 40
100094-145 190 01 8.00 02 80 50 | 100094-146 190 01 8.00 02 21 5 138 1
100094-147 190 01 8.00 02 19 5 135 1
100094-148 190 01 8.00 02 30 0 250 | 100094-149 190 01 8.00 02 60 40
100094-150 190 01 8.00 02 60 40
100094-151 190 03 8.00 02 60 40 | 100094-152 190 01 8,00 02 19 5 135 1
100094-153 190 01 8.00 02 269 208 | 100094-154 190 01 12.00 02 60 40
100094-155 190 01 8.00 02 29 0 238
100094-156 190 01 8.00 02 275 168 | 100094-157 190 01 8.00 02 275 172
100094-158 190 01 8.00 02 . 60 40 | 100094-159 190 01 8.00 02 60 40 100094-160 190 01 10.00 02 60 40 | 100094-161 190 01 10:00 02 60 40 10:00 04 10:00 | 100094-164 190
01 8.00 02 60 40 | 100094-165 190 01 8.00 02 60 40 | 100094-168 190 01 8.00 02 236 174 1 | 100094-169 190 01 8:00 02 183 180 1
100094-170 190 01 12:00 02 235 167 2 | 100094-171 190 01 8 00 02 60 40 | 100094-173 190 01 8.00 02 60 40 | 100094-175 190 01 8.00 02 60 40 | 100094-176 190 01 8.00 02 60 40 | 00094-177 190 01 8.00 02 60 40
00094-178 190 01 8.00 02 60 40 | 94-247 190 01 8.00 02 275 172
94-248 190 01 1 0 00 02 275 240 | 100094-249 190 01 10.00 02 260 223 · | | -27 190 01 6.00 | .22 03 11 12/78 AG GW
000091-26 190 01 6.00 02 | .44 00093-24 190 01 6.00 02 11 12/78 AG GW 00093-25 190 01 6.00 02 | 74.00 03 576.36 02 11 1/87 AG BOTH 00094-135 190 01 8.00 02 60 40 00094-136 190 01 8.00 02 60 40 00094-137 190 01 8.00 02 60 40 00094-138 190 01 8.00 02 60 40 | 100094-139 190 03 02
100094-140 190 01 8.00 02 160 100
100094-141 190 03 02
100094-142 190 03 02 | 100094-143 190 01 8.00 02 260 140
100094-144 190 03 . 02 60 40
100094-145 190 01 8.00 02 80 50 | 100094-146 190 01 8.00 02 21 5 138 1
100094-147 190 01 8.00 02 19 5 135 1
100094-148 190 01 8.00 02 30 0 250 | 100094-149 190 01 8.00 02 60 40
100094-150 190 01 8.00 02 60 40
100094-151 190 03 8.00 02 60 40 | 1100094-152 190 01 8.00 02 195 135 1
1100094-153 190 01 8.00 02 269 208 | 00094-154 190 01 12.00 02 60 40
00094-155 190 01 8.00 02 290 238
00094-156 190 01 8.00 02 275 168 | 100094-157 190 01 8.00 02 275 172
100094-158 190 01 8.00 02 . 60 40 | 100094-159 190 01 8.00 02 60 40 100094-160 190 01 10.00 02 60 40 | 100094-161 190 01 10:00 02 60 40 10:00 04 10:00 | 100094-164 190 01 8.00 02 60 40 | 100094-165 190 01 8.00 02 60 40 | 100094-168 190 01 8.00 02 236 174 1 | 100094-169 190 01 8:00 02 183 180 1
100094-170 190 01 12:00 02 235 167 2 | 100094-171 190 01 8 00 02 60 40 | 100094-173 190 01 8.00 02 60 40 | 100094-175 190 01 8.00 02 60 40 | 100094-176 190 01 8.00 02 60 40 | 100094-177 190 01 8:00 02 60 40 100094-178 190 01 8:00 02 60 40 | 100094-247 190 01 8.00 02 275 172 | 100094-249 190 01 10.00 02 260 223 · | 70 0.50 131 0.50 2575 0.85 | | 3331 0.50 | 146 0.50
1104 0.50 | 2157 0.50
1500 0.50 | |--|--|-------------------------------|---| | | | 26
26 | 1.5 5 | | | &
• | 8.
8. | 9 9
9 9 | | | | 61
15 | 20 | | | - | | | | | • | | | | 00000 | 000000000000000000000000000000000000000 | 01
01 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | PANY
GW
GW | COMPANY
835 GW
863 GW
902 GW
1188 GW
383 GW
478 GW
411 GW | | 780650
781800
784577
786029
766586
772900 |
755128
755883
7556670
755766
755766
755757
755889
755889
756889
755889
755889
755889
755891
757159
757159
757159
757159
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
758152
7 | ER COMP.
682095 (| ER 728 | | 339600
339600
339469
339442
343825
338000
338000 | 406065
407923
7 408947
7 408947
7 408626
7 396865
7 396865
7 387307
383494
7 384051
7 384051
7 387622
387622
387622
387622
387622
7 387622
7 387762
7 387762 | THE COLLI
390733
390733 | THE COLLI
386745
386754
386849
386812
386912
384913
389620 | | 650
700
600
600
600
2500
2500 | 31 | 2
600
900 | 35
900
900
900
900
800
800
1000 | | | ⊗ | GW | мб | | 0000 | AG | AG | AG | | 22222 | 98/8 | 3/82 | 1/79 | | 260
260
260
260
260 | 22 23 26 60 60 60 60 60 60 60 60 60 60 60 60 60 | 11 | 11 | | 00 02
00 02
00 02
00 02
00 02 | 222222222222222222222222222222222222222 | 02
02
02 | | | 10.01 | 678.2 | 65,00 | 99999999 | | 190 01
190 01
190 02
190 02
190 02
190 01 | 1991 011 011 011 011 011 011 011 011 011 | 221 01
221 01 | 206 01
206 01
206 01
206 01
206 01
206 01
206 01 | | 1100094-251
1100094-252
1100094-253
1100094-254
1100094-255
1100094-SW1 | 1100100-34
1100100-35
1100100-36
1100100-39
1100100-40
1100100-44
1100100-43
1100100-44
1100100-48
1100100-48
1100100-48
1100100-52
1100100-52
1100100-53
1100100-54
1100100-54
1100100-54
1100100-54
1100100-54
1100100-54
1100100-54
1100100-54
1100100-54
1100100-54
1100100-54
1100100-60
1100100-60 | 1100101-1
1100101-2 | 1596.56
1100102-94
1100102-95
1100102-96
1100102-97
1100102-99
1100102-100
1100102-100 | | | 180 | 1100101 | 1100102 | | · | 38 0.5 | 0 | 160 0.50 | 354 0.50
200 0.50 | |---|--|--|---|--| | | | 5.5 | 56 | 2 e
2 e | | | | 8.0 | 8.0 | 88.0 | | | | 15 | 61 | 15 | | | | | | | | 726877 GW
726386 GW
723855 GW
723488 GW
723528 GW
723512 GW
723512 GW
721750 GW
721750 GW
721750 GW
721306 GW
7118890 GW
7119890 GW
719890 GW | 722186 GW 0
718027 GW 0
718037 GW 0
715648 GW 0
71595 GW 0
715919 GW 0
716053 GW 0 | 771393 GW
0 GW
783300 GW
786600 GW
781400 GW | COLLIER
4 768663 GW 01
4 763306 GW 01
1 761761 GW 03
5 762027 GW 03
5 764295 GW 03
7 76417 GW 03
6 765111 GW 03
6 765819 GW 03
7 763371 GW 03
6 765819 GW 03
7 763371 GW 03
8 76171 GW 01
9 761272 GW 03
6 761974 GW 03 | R DEVELOPMENT CORPERATION 9 722336 GW 03 3 720631 GW 03 8 719427 GW 03 | | 380187
383478
383478
379568
379578
382368
384255
384255
384255
384255
384255
381539
381539
382321
382292
380162
406057 | 407546
380995
382174
383057
380074
379826
COLLIER | 357691
0
365750
370400
365750
368400 | BARRON
391904
392614
393391
394255
3947614
403195
4032195
4032195
40367
401460
407450 | COLLIER
385179
386403 | | 000 6 8 000 000 000 000 000 000 000 000 | 700
600
600
800
800
800
600
600 | 800
800
800
800 | 15
800
800
800
800
800
800
800
800
800
80 | 009
009 | | | W.D | | 3 | 3 5 | | d, | - V | w000 | B | A G | | | 1/79 | 13
13
13 | 98/8 | 70 | | ν | 11 | 185
190
190
190 | 111
202
244
211
844
117
655
65
47
47
47 | 11 80 | | 8 9 00 02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000 | 000000 | 32.58 02 02 02 02 02 02 02 02 02 02 02 02 02 | 9.00 02
6.00 02
6.00 02 | | 206 01
206 01 | 10 10 10 10 10 10 | 190 01
190 01
190 01
190 01
190 01 | 191 01
191 01
191 01
191 01
191 01
191 01
191 01
191 01
191 01
191 01 | 206 01
206 01
206 01
206 01 | | 1100102-103
1100102-104
1100102-105
1100102-106
1100102-109
1100102-110
1100102-111
1100102-111
1100102-114
1100102-114
1100102-114
1100102-116
1100102-116
1100102-116
1100102-116
1100102-116
1100102-116 | 1100102-1
1100102-1
1100102-1
1100102-1
1100102-1
1100102-1
1100102-1 | 1100105
1100105-181
1100105-182
1100105-192
1100105-194
1100105-196 | 1100107
1100107-19
1100107-20
1100107-21
1100107-24
1100107-24
1100107-25
1100107-26
1100107-26
1100107-28
1100107-29
1100107-29
1100107-30
1100107-31
1100107-31 | 1100108 196.80
1100108
1100108-129
1100108-130 | | | . 13 1,5 15 1800 0.50 | 13 0.8 15 175 0.85 | 13 1.5 15 3455 0.50 | 13 0.8 15 84 0.50 | 13 0.8 15 40 0.50 | |---------------------|---|--|--|---|---| | 385252 716691 GW 03 | ALICO FELDA GROVE 380900 792550 GW 04 380500 790850 GW 01 378200 790500 GW 01 378800 789600 GW 01 378800 787650 GW 01 378809 78769 GW 01 378989 784966 GW 01 378759 78648 GW 01 381112 787414 GW 01 382424 787591 GW 01 383301
787164 GW 01 | BOB PAUL, INC.
349431 777537 GW 04
350454 776467 GW 03
351121 776453 GW 03
351614 776455 GW 03
350606 775206 GW 03
351418 775191 GW 03 | ALICO
318734 787715 GW 01
319407 787660 GW 01
320776 785500 GW 01
318202 781523 GW 01
333385 78450 GW 01
333745 784507 GW 01
332745 786998 GW 01
329628 786998 GW 01
329628 786998 GW 01
329628 786998 GW 01
329628 786098 GW 01
329937 786998 GW 01
32932 791091 GW 04
336215 791091 GW 04
336215 788155 GW 01
329382 788155 GW 01
329382 788155 GW 01
329382 788155 GW 01
329382 788157 01 | HARRY C. MCDONALD
352585 781673 GW 04
352604 780947 GW 04 | HARRY C. MCDONALD
354736 784631 GW 03
354638 783403 GW 03 | | 30 900 | 1/86 AG GW 12
150 02 600
50 600 | 2/88 AG GW 6
500
250
250
450
450 | /81 AG GW 25
600
600
600
600
600
500
500
500
500
1100
350
500
500
500
500
500
650
650
650
650
6 | 779 AG GW 250
250
250 | /86 AG GW 2 | | 16 01 9.00 02 40 | 223 02 170
3 01 10.00 02 170
3 01 10.00 02 40
3 01 10.00 02 40
3 01 10.00 02 40
3 01 10.00 02 50
3 01 10.00 02 50
1 01 10.00 02 50
1 01 10.00 02 50
1 01 10.00 02 50
1 01 10.00 02 50
2 01 01 6.00 02 50 | 03 26.44 02 11 1
0 03 12.00 02 210
0 01 8.00 02 80
0 01 8.00 02 80
0 01 8.00 02 80
0 01 8.00 02 80 | 89 01 1415.00 01 11 9 89 01 9.00 02 30 89 01 9.00 02 74 89 01 6.00 02 28 89 01 6.00 02 45 89 01 6.00 02 45 89 01 6.00 02 45 89 01 6.00 02 45 89 01 6.00 02 30 71 01 8.00 02 190 71 01 8.00 02 190 71 01 6.00 02 196 71 01 6.00 02 196 71 01 6.00 02 48 71 01 6.00 02 48 71 01 6.00 02 45 71 01 6.00 02 45 71 01 6.00 02 45 71 01 6.00 02 45 71 01 9.00 02 39 71 01 9.00 02 38 71 01 9.00 02 36 71 01 9.00 02 36 71 01 9.00 02 36 | 03 11 5.
10 01 8.00 02 175
10 01 8.00 02 175 | 22.60 02 11 7
0.01 6.00 02 84
0.01 6.00 02 84 | | 1100108-132 20 | 1100119
1100119-33 17
1100119-34 17
1100119-35 17
1100119-36 17
1100119-37 17
1100119-120 19
1100119-122 19
1100119-123 19
1100119-124 19 | 1100120 71.84
1100120-64 19
1100120-65 19
1100120-66 19
1100120-67 19
1100120-67 19 | 182
182
183
184
185
186
187
188
188
188
188
188
188
188 | 1100140 18.25
1100140-17 19
1100140-18 19 | 1100146
1100146-53 19
1100146-54 19 | | 640 0 | | 350 0.85 | |------------|--|--| | 26 | $_{\circ}$ | 15 | | 8.0 | • | | | ш г
Ю д | | FREEZE PROTECTION ONLY | | | | 000000000000000000000000000000000000000 | | SCOFIELD | 10000000000000000000000000000000000000 | GROVES
1 769273 GW
GROVES
1 781729 GW
12 781729 GW
13 781758 GW
14 780763 GW
15 779470 GW
16 779471 GW
17 779473 GW
17 779473 GW
18 779473 GW
19 779473 GW
19 779473 GW
19 779473 GW
10 GW | | MILES SC | 20036
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
100000
100000
100000
100000
100000
100000
100000
100000
1000000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000
1000000
100000
100000
100000
1000000
100000
100000
100000
100000
100000
100000
1000000 | 405397
403111
BERRY GR
350411
351022
350817
352062
350817
351846
351846
35279
349415
351386 | | 41 | | 13
200
200
200
200
200
200
200
500
500
500 | | 35 | | % | | 3/82 AG | | 1.80 AG
70 70
70 70
70 70
70 70 | | 11 | 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 105
111
105
900
900
900
900
900
2000
2000 | | 177.00 02 | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 192 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | 11001147
11000147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147
111001147 | 1100147-11
1100172-40
1100172-43
1100172-43
1100172-44
1100172-46
1100172-46
1100172-46
1100172-48 | | 1100147 | | 1160172 | | | 240 0.50 | 280 0.50 | 490 0.50 | 5010 0.85 | |---|---
--|--|---| | | 56 | 56 | 26 | 15 | | | 8 0 | 8.
0 | 4.0 | 8.0 | | | 13 | 61 | 61 | 13 | | | | • | | STRAND DIVISION | | | | 011
011
011
011
011
011 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | π
α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 715629 GW
715680 GW
716016 GW
717250 GW
717485 GW
717522 GW
717903 GW
718700 GW | ARTLAND
694000 GW
694000 GW
681000 GW
681000 GW
681000 GW
681000 GW
683000 GW
683000 GW | 1ER COMPANY
687000 GW
687000 GW
687000 GW
687000 GW
687000 GW | 0LLIER SILV
786300 GW
786300 GW
783600 GW
783600 GW
780640 GW
777350 GW
777350 GW
777350 GW
777350 GW
777350 GW
777350 GW
777530 GW
77530 GW
77530 GW
77530 GW | | | CHRIS SAPP
402239
401712
401185
402061
404263
404629
406097
406182
405254 | C. M. HE 465000 465000 466000 466000 462000 464000 461000 463000 | THE COLL
385000
385000
385000
385000
385000
385000 | BARRON G
365990
365990
365990
370710
369200
369200
369300
369300
369300
361630
361630
361630
361630 | | | 10 0 | 10000
10000
10000
10000
10000
10000
10000 | 1000
1000
1000
1000
1000
1000 | | | | 3 5 | 011
011
011
011
011
011 | G.W. | M O O M | | · | 12/81 AG | 1/88 AG
20
20
20
20
20
20
20
20
20 | 3/82 AG | 9/87
1330
1330
1330
1330
1330
1340
140
140
140
140 | | | 11
100
100
100
100
100
100
100
100 | 600 | 11
70
70
70
70
70
70 | 11
1900
1900
1900
1900
2000
2000
2000
20 | | | 130.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02 | 52.40 02
8.00 02 | 302.00 02
6.00 02
6.00 02
6.00 02
6.00 02
6.00 02
8.00 02 | 848.13 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | | | 206 01
206 01
206 01
206 01
206 01
206 01
206 01
206 01 | 223 01 22 | 221 01
221 01
221 01
221 01
221 01
221 01 | 000000000000000000000000000000000000000 | | | 579.00
1100214-133
1100214-135
1100214-136
1100214-137
1100214-137
1100214-139
1100214-140 | 1100217-1
1100217-2
1100217-3
1100217-4
1100217-6
1100217-6
1100217-9
1100217-9
1100217-10 | 1100223-3
1100223-4
1100223-4
1100223-6
1100223-7
1100223-8 | 2304.36
1100233-260
1100233-261
1100233-264
1100233-264
1100233-265
1100233-267
1100233-270
1100233-270
1100233-270
1100233-270
1100233-270
1100233-270
1100233-270
1100233-270 | | | 1100214 | 184 | 1100223 | 1100233 | | | 50 0.85 | 4945 O.85 | |---|---------------------------------------
--| | | 15 | 1.
5. | | | 0.8 | 8.0 | | | 13 | 13 | | 359650 772700 GW 04 359060 783810 GW 04 361570 783810 GW 04 358450 786500 GW 04 362500 789020 GW 04 364900 789050 GW 04 364900 789050 GW 04 361200 791800 GW 04 36660 791900 GW 04 36660 791800 GW 04 36660 791900 GW 04 36660 791900 GW 04 36680 791900 GW 04 36680 791900 GW 04 369690 791820 GW 04 | DAVID C. BROWN
353150 782200 GW 03 | Y 33450 807240 GW 04 335690 805650 GW 04 335690 805650 GW 04 33560 804535 GW 04 33560 804535 GW 04 33563 803250 GW 04 33583 803353 GW 04 332340 801385 GW 04 332340 801385 GW 04 332340 801385 GW 04 33565 79940 GW 04 33565 79940 GW 04 33565 79990 GW 04 33565 79990 GW 04 33565 79980 33560 79520 GW 04 33560 79520 GW 04 33560 79520 GW 04 33560 795250 GW 04 33560 79985 GW 04 33666 79074 GW 04 34656 78908 34685 78908 GW 04 34686 78938 GW 04 34081 78743 GW 04 34081 78743 GW 04 34085 78743 GW 04 34085 78743 GW 04 34085 78743 GW 04 | | | 1 600 | 0 4 4 0 4 4 4 6 4 0 4 4 4 4 4 4 6 4 6 4 | | | M. C. | \$0000000000000000000000000000000000000 | | 140
140
140
140
140
140
140
140
140 | '83 AG | 87 AG | | 200
200
200
200
200
200
200
200 | 11 9/
90 | 11 1/
2552 2265 2265 2265 2265 2265 2265 2265 | | 12.00 02
12.00 02 | 5.3 02
8.00 02 | 837.13 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
10.00 02 | | | 190 01 | 171 01
171 01
171 01
171 01
171 01
171 01
171 01
171 01
171 01
171 01
172 02
172 02
172 02
172 02
173 02
174 03
177 03
17 | | 1100233-280
1100233-281
1100233-282
1100233-283
1100233-284
1100233-286
1100233-289
1100233-290
1100233-291
1100233-291
1100233-291
1100233-292 | 1100250-134 | 1100262-99 1100262-100 1100262-100 1100262-101 1100262-103 1100262-104 1100262-106 1100262-109 1100262-110 1100262-111 1100262-112 1100262-113 1100262-113 1100262-110 1100262-110 1100262-110 1100262-110 1100262-110 1100262-110 1100262-111 1100262-111 1100262-111 1100262-111 1100262-111 1100262-111 1100262-111 1100262-111 1100262-111 1100262-111 | | • | 1100250 | 785
185 | | | 290 0.50 | 47 0.70 | 2698 0.50 | |--|--|---|--| | | 26 | 26 | 56 | | | 8.0 | 8.0 | त | | | | 13 | 19 | | | | w ₁ , | | | 120 02 500 Y 337915 799196 GW 04 120 02 345 Y 340813 798891 GW 04 120 02 345 Y 34083 797712 GW 04 120 02 463 Y 337926 796846 GW 04 120 02 465 Y 341879 796324 GW 04 120 02 465 Y 341859 795014 GW 04 120 02 405 Y 337933 794070 GW 04 120 02 645 Y 338011 792717 GW 04 120 02 645 Y 341660 793542 GW 04 120 02 647 Y 345252 796690 GW 04 120 02 470 Y 346457 794239 GW 04 172 02 800 Y 347113 785500 GW 04 | /85 AG GW 7 THOMAS 6 RHONDA BAKER 15 02 200 Y 454466 699520 GW 03 15 02 200 Y 455294 699348 GW 03 15 02 200 Y 465070 699120 GW 03 15 02 200 Y 455142 698224 GW 03 15 02 200 Y 45530 696792 GW 03 15 02 200 Y 455202 695812 GW 03 15 02 200 Y 455346 694922 GW 03 | /85 AG GW 5 COLLIER ENTERPRISES (NURSERY) 02 1400 384525 736423 GW 03 02 1400 384471 735561 GW 03 02 1400 385282 736451 GW 03 02 1400 384487 736015 GW 03 02 1355 383048 737221 GW 03 | 785 AG GW 28 COLLIER ENTERPRISES 390320 739833 GW 01 408602 73672 GW 01 408935 737413 GW 01 408952 737413 GW 01 408952 736773 GW 01 408962 736773
GW 01 408962 736773 GW 01 408962 736773 GW 01 395016 738106 GW 01 395743 737340 GW 01 395743 737340 GW 01 385614 738724 GW 01 384330 737340 GW 01 384330 737340 GW 01 384330 737340 GW 01 384330 73936 GW 01 384330 73936 GW 01 384339 73936 GW 01 384339 739376 GW 01 38432 734143 GW 01 385869 730301 GW 01 385869 747440 GW 01 385866 74674 GW 01 385866 74674 GW 01 385244 74492 GW 01 385244 74492 GW 01 385866 74674 GW 01 385866 74674 GW 01 385866 74674 GW 01 | | 7 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 11
88888888888888888888888888888888888 | 11 7,
90 90
90 90 | 7 11 7 | | 10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02 | 49.29 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02 | 8.45 02
12.00 02
12.00 02
12.00 02
12.00 02
12.00 02 | 533.27
6.00 02
8.00 02
8.00 02
6.00 02
8.00 | | 172 02
172 02
172 02
172 02
172 02
172 02
172 02
172 02
172 02
172 02 | 000000000000000000000000000000000000000 | 03
206 01
206 01
206 01
206 01
206 02 | 206 01
206 01
191 01
191 01 | | 1100262-120
1100262-121
1100262-122
1100262-123
1100262-125
1100262-126
1100262-127
1100262-128
1100262-128 | 1100318-
1100318-
1100318-
1100318-
1100318-
1100318- | 123.00
1100320-147
1100320-148
1100320-149
1100320-150 | 1100321-154
1100321-155
1100321-157
1100321-159
1100321-160
1100321-161
1100321-161
1100321-167
1100321-167
1100321-167
1100321-167
1100321-170
1100321-170
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171
1100321-171 | | | 1100318 | 186 | 1100321 | . | 353 0.85 | 0.50 | | 900 0.50 | 430 0.85 | 2136 0.50 | 30 0.75 | |--|--|---|---|---|---|-------------------------| | 56 | 26 | | 15 | 9 | 4 | 15 | | 8.0 | 0.4 | | 8.0 | 1.5 | 0.8 | 8.0 | | 13 | 15 | | 09 | 13 | | 20 | | ന ന ന ന | 003
003
003
003
003
003
003
003 | | | GHT GROVES
01
01 | m m m | 1 | | WILLIAMS
718607 GW 0.
718457 GW 0.
717040 GW 0. | OLLIER COMPA
715050 GW
713300 GW
712740 GW
712740 GW
716400 GW
714410 GW
714410 GW
713200 GW
71710 GW
71710 GW
71710 GW
71710 GW
71710 GW | 7840 GW
7840 GW
7860 GW
7890 GW
5890 GW | WILLIAMS, JR. 755300 GW 01 756200 GW 01 753800 GW 01 750900 GW 01 755000 GW 01 755000 GW 01 755600 GW 01 752800 GW 01 752800 GW 01 750400 | ERTIES - WRI
770281 GW
768695 GW
786618 GW | HAM COMPANY
920651 GW 00
919399 GW 00
918064 GW 00 | BANNON
3 886216 GW 0 | | JAMES E.
410387
408126
407687
409732 | BARRON C
386280
386280
383590
383580
383580
38220
382250
382250
380300
380300
380300
380300 | 8881 | JAMES E. 354100 350300 347700 346200 353000 358400 358400 358400 358400 358400 358400 358400 348200 | REX PROP
342081
347451
349563 | 1 THE GRAH
443803
443775
443753 | PAUL O'B
387158 | | 1000
1000
1000
1000 | 22
900 N
800 N
800 N
900 N
1000 Y
1000 Y
1000 Y
1000 Y
1000 Y | | 10
800
800
800
800
1000
1000
1000
800
600
1000
500 | 3
1100
1100
1100 | 3
800
800
800
16000 | 1 500 | | 3 5 | 00000000000000000000000000000000000000 | 005555 | 00220002200000000000000000000000000000 | M.S | вотн | S. | | 6/86 AG
40
40
40
40 | 1/87
45
45
30
32
32
45
45
45
45
45
45
45
45
45
45 | ស្រល់ល្ប់ស្ល
ឯងឧងឯង | 3/87 AG
27
27
30
30
25
25
28
38
30
35
35 | 3/88 AG
70
70
70 | 2/77 AG | 7/77 AG | | 11
60
60
60 | 11486 | 880
880
800
800
800
800 | 111
224
32
33
30
25
28
35
35
35
35
35 | 11
100
100
100 | 22
70
70
70 | 22
32 | | 59.76 02
8.00 02
8.00 02
8.00 02 | 234.9
9.00 02
6.00 02
8.00 02
9.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02
10.00 02 | | 195.89 02
10.00 02
10.00 02
8.00 02
13.00 02
13.00 02
13.00 02
13.00 02
6.00 02
6.00 02
6.00 02 | 72.79 02
12.00 02
12.00 02
12.00 02 | 349.34 02
6.00 02
6.00 02
6.00 02 | 6.00 02 | | 206 01
206 01
206 01
206 01 | 200 03 200 00 00 00 00 00 00 00 00 00 00 00 00 | 00000 | 1990 01
1990 01
1990 01
1990 01
1990 01
1990 01
1990 01 | 03
190 02
190 02
190 02 | 03
137 03
137 03
137 03 | 136 01 | | 1100354-143
1100354-144
1100354-145
1100354-146 | 1100376-195
1100376-196
1100376-197
1100376-198
1100376-200
1100376-201
1100376-203
1100376-204
1100376-205
1100376-206
1100376-206
1100376-206 | 00376-21
00376-21
00376-21
00376-21 | 1100386-235
1100386-235
1100386-235
1100386-237
1100386-239
1100386-240
1100386-241
1100386-241
1100386-242 | 197.78
1100440-256
1100440-257
1100440-258 | 2106,56
2200002-5
2200002-6
2200002-7
2200002-SW1 | 9.45
2200039-4 | | 100354 | 100376 | 187 | 1100386 | 1100440 | 2200002 | 200039 | | | 640 0.50 | 181 0.50 | 487 0.50 | 40 0.85 | 370 0.50
1155 0.85 | 20 0.85 | | |---|--|------------------------------------|-----------------------------------|----------------------|-----------------------|-------------|---------|----------|----------|----------|-----------|----------------|----------|----------|----------------------|-------------|----------|-----------|----------|----------------------|----------------------|----------|----------|------------|------------------------|----------|----------|----------|------------|------------|--------------|------------------------|-------------------------|--| | | 15 | 14 | 14 | 15 | 15 | 15 | | | | 8.0 | 3.6 | 9.
E | 8.0 | 8.0 | • | 8.0 | | | | 20 | 01 | 01 | 13 | 61 | 1 | 13 | 2 | | | | | | | | | | | | | 8 8 8 8 8 8 0
8 0 8 0 | 03
03 | 03 | 04 | | 08 | 04 | 2 C | 0.4 | 04 | 200 | 0 0 | 03 | 04 | * 0 | 04 | 04 | 04 | 04 | 200 | 04 | 04 | 04 | 0.4 | 50 | 03 | 04 | 04 | 04 | 03 | 03 | 03 | 04 | | | | BROTHERS, INC.
79 904786 GW
13 906103 GW
57 902662 GW
89 901889 GW | FARMS
900569 GW
898634 GW | FARMS
893639 GW
892703 GW | WALKER
905696 GW | | 00601 | | 11300 | 1130 | 00060 | 906100 GW | 04300 | 03200 | 03250 | 06290 | 04600 | 03700 | 01000 | 01000 | 97400 | 896000 GW | 03650 | 0365 | 03650 | 02200 | 0150 | 03597 | 0 | 036 | 06616 | 04054 | 902226 GW
902409 GW | .P. HANSEN
906850 GW | | | | LYKES BR
368479
369513
371457
375189 | FRIERSON
498572
498587 | FRIERSON
494316
494327 | ROWLAND 367519 | SIX L'S | - 10 | 326100 | 2 5 | 9 | ٥ | 34
7 | S 5 | | 3.4 | ى ت
⊃ ت | 200 | 90 | 2 | io i | ט כ | 10 | 96 | 5 | 9 6 | ם כ | 9 (0 | 2 | | 711
716 | 630
630 | 642 | 366341
368803 | C.M. 6 S
336000 | | | • | 4
450
300
700
800 | 2
800
800 | 2
800
800 | 1
150 | 34 | 75.0 | 700 | 75.0 | 700 | 700 | - | 00/ | 700 | 700 | 067 | 2 | 300 | 750 | 007 | 750 | 750 | | | 000 | 007 | 700 | , | | | C | 0 | 500 | 107 | | | | OW | GW | ₩. | œ. | œ. | 00 | 01 | 01 | 01 | 0.1 | , | 0.1 | 01 | 01 | 2 0 | ,
) | 02 | 05 | 10 | 2 0 | 020 | | | | | 020 | | | | | | 02 | GW
01 | | | | AG | AG | AG | AG | AG | AG | | | | 1/88 | 18/8 | 5/82 | 68/1 | 88/8 | - | | 00 6 | 0.0 | 10 | ထင | 2ο α | . 4 | œ , | → • | 9 60 | 6 | 10 | ထင | ⊃ α | ⊃ 000 | œ | 7 | œ « | r < | | - 50 | - αο | ∞ ο | D < | . 47 | 40 | 6/83 | | | | 22
700
700
700
700 | 22
150
150 | 22
150
150 | 22
150 | 22 | цſ | 120 | 90 | า⊢ | ~~ | 165 | 90 | 0 | \sim | ○ < | 165 | S | (L) | യ | വ | > ⊾೧ | o | 180 | o u | ט מ | 200 | > < | 4 | 145 | কু প | 000 | 50
50 | 22
120 | | | | 8.00 02
6.00 02
10.00 02
10.00 02 | 27.38 02
8.00 02
8.00 02 | 71.4 02
8.00 02
8.00 02 | 0.22 02 6.00 02 | 8,74 02 | 000 | | 0.00.0 | 8.00 0 | 0 00. | .63 | . 63
0 . 63 | .63 0 | 000. | . 63 | o co
n m | .63.0 | 0.00 | 00. | 00.00 | 0 63 . | .63 | .63 0 | 63.0 | | .63 | 000. | 000. | 00, | | 0.00 | 10.00 02 | .113 02 | | | | 03
135 01
135 01
135 01
135 01 | 03
138 01
138 01 | 03
138 01
138 01 | 03
134 01 | 03 | וט ויצ נ | 4.4 | 9.4 | J 62 | 3.4 | 34 | 0 G | 34 | 34 | 4 | 3 6 | 34 | 34 | 9.4 | ין רי
די די | 3 C | 34 | 34 | 34 | J (| J (c. | . 6 | 34 | 3.4 | ਰ ਨ
ਹ ਹ | ה קר
ה רי | 134 02 | 03
134 01 | | | | 7 537.62
2200047-23
2200047-24
2200047-25
2200047-25 | 5 149.37
2200065-7
2200065-8 | 377.00
2200066-9
2200066-10 | 9 18.4
2200069-11 | 759.71 | 1-07.000.52 | 200070- | 200070-1 | 200070-1 | 200070-1 | 200070-1 | 200070-1 | 200070-2 | 200070-2 | 200070-2
5 050005 |
200070-2 | 200070-2 | 2000070-2 | 200070-2 | /-0/000/
/-0/000/ | 200070-3
200070-3 | 200070-3 | 200070-3 | 200070-3 | 6-07-0002
6-07-0002 | 200070-3 | 200070-3 | 200070-3 | 200070- | 2000/0-4 | 200070-6 | 070-6 | 8 9.20
2200068-10 | | | | 2200047 | 2200065 | 2200066 | 2200069 | 2200070 | 70007 | | | | 18 | 88 | | | - | | | | | | | | | | | | | | | | | | | 2200068 | | | 17 0.85 | 6 0.85 | 62 0.85 | 60 0,85 | 148 0.85 | 71 0.85 | 14 0.50 | 272 0.85 | 27 0.85 | 27 0.85 | 300 0.85 | |---|---|---|--|--|--|---|---|---|--------------------------------------|--| | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | 8. | 0.8 | 0.4 | 8 0 | 0.8 | 0.8 | 8.0 | 8.0 | 0.8 | 8.0 | 8.0 | | 13 | 13 | 13 | e
H | 13 | 13 | 70 | 13 | 13 | 13 | 13 | | 04
01 | 0 0 4 4 4 4 | 04
05 | 04
01 | 04
04 | BEE BRANCH GROVES 04 04 | GLADES TREE FARM
W 04
W | ВАК W RANCH
01
01
01
04
04 | TRUSTEE
01 | TRUSTEE
01 | 000000
44444 | | W. COFFMAN
897928 GW
898021 GW | . SMALL
886255 GW
886409 GW
886127 GW | GROVE
909980 GW
910662 GW | . MURRAY
893700 GW
893700 GW
893700 GW | FERGUSON
895525 GW
894729 GW
891827 GW | FREEMAN - BI
914085 GW
914119 GW
912885 GW
913650 SW | WOODS - GLA
899200 GW
899300 SW
899300 SW | SHAFER - S
898826 GW
897979 GW
897014 GW
897021 GW
897596 GW
896776 GW
898201 SW
897797 SW | PAUL, JR.,
900496 GW | PAUL, JR., 899181 GW | B. FREEMAN
901692 GW
903698 GW
905791 GW
905874 GW
904364 GW | | CHARLES
375727
375146 | DENNIS G
361290
361291
361297 | PERKINS
338992
339009 | GERALD W.
325200
326000
326200 | WALTER F
374062
373136
373433 | 1 JACK A.
345187
346085
345986
345900 | 2 FRANK M.
333900
333000
333000 | FRANK C.
368380
368423
368443
370097
369645
371859
328478
328476 | JOHN R.
338837 | JOHN R.
337456 | JEFFERY
337815
337707
375796
377608
375534 | | 2 100 | 3
60
125
125 | 2
700
500 | 3450 | 3
500
600 Y | 3
150
150
150 | 200
40
40 | 265
200
200
300
300 | 130 | 130 | 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 35 0 | | | | | | | | | | | | υο | GW
01
02
02 | G₩
02
02 | GW
0.2 | GW 02 | BOTH
02
02 | BOTH
02 | BOTH
02
02
02
02
02 | GW
02 | GW
02 | MS . | | A G | AG GW 01 02 02 | 9 | A G | AG | AG | AG | A G | AG GW 02 | AG GW
02 | AG. | | | | y G | | | | 7 AG | P | AG | A G | • | | 7 AG
40
30 | /87 AG | 4 . AG
55
80 | 9 4 | 7 AG
30
30
99 | A 6 6.2 | AG
2 | 87 AG
20
20
20
00
00 | | | 655
655
655
655
655
655 | | 22 5/87 AG
02 180 140
02 55 30 | 22 4/87 AG
02 130
02 130
02 130 | 22 7 /84 · AG
02 300 155
02 138 80 | 22 4/88 AG 02 180 30 02 180 30 02 60 30 | 22 7/87 AG
02 123 80
02 120 100
02 135 99 | 22 7/87 AG
02 90 46
02 120 120
02 75 45 | 22 5/87 AG
02 126 122 | 22 10/87 AG
02 50 20
02 50 20
02 50 20
02 50 20
02 150 100
02 150 100 | 22 5/ 87 AG
02 50 | 22 5/87 AG
02 50 | 22 5/87 AG
02 100 65
02 100 65
02 100 65
02 100 65
02 100 65 | | 22 5/87 AG
180 140
55 30 | 22 4/87 AG
130
130
130 | 22 7/84 AG
2 300 155
2 138 80 | 22 4/88 AG
180 30
180 30
60 30 | 22 7/87 AG
123 80
120 100
135 99 | 22 7/87 AG
90 46
120 120
75 45 | 22 5/87 AG
126 122 | 22 10/87 AG
50 20
50 20
50 20
50 20
150 100
150 100 | 22 5 /87 AG
50 | 22 5/87 AG
2 50 | 22 5/87 AG
2 100 65
2 100 65
2 100 65
2 100 65
2 100 65
2 100 65 | | 22 5/87 AG
.00 02 180 140
.00 02 55 30 | 03 2.00 02 130
01 4.00 02 130
01 6.00 02 130 | 22 7/84 AG 0.00 02 300 155 6.00 02 138 80 | 22 4/88 AG
0.00 02 180 30
0.00 02 180 30
6.00 02 60 30 | 22 7/87 AG
3.00 02 123 80
9.00 02 120 100
2.00 02 135 99 | 03 22 7/87 AG
01 10.00 02 90 46
03 6.00 02 120 120
02 8.00 02 75 45 | 03 22 5/87 AG
01 6.00 02 126 122
01 | 22 10/87 AG
00 02 50 20
00 02 50 20
00 02 50 20
00 02 150 100
00 02 150 100 | 22 5/87 AG | 22 5/87 AG | 22 5/87 AG
00 02 100 65
00 02 100 65 | | 3 6.00 02 180 140
1 6.00 02 55 30 | 2.00 02 130
4.00 02 130
6.00 02 130 | 22 7/84 : AG 10.00 02 300 155 6.00 02 138 80 | 22 4/88 AG
10.00 02 180 30
10.00 02 180 30
6.00 02 60 30 | 3 3.00 02 123 80
2 9.00 02 120 100
1 12.00 02 135 99 | 03 22 7/87 AG
135 01 10.00 02 90 46
135 03 6.00 02 120 120
135 02 8.00 02 75 45 | 03 22 5/87 AG
134 01 6.00 02 126 122
134 01
134 01 | 22 10/87 AG
6.00 02 50 20
6.00 02 50 20
6.00 02 50 20
6.00 02 150 100
6.00 02 150 100 | 3 22 5/ 87 AG
2 6.00 02 50 | 3 22 5/ 87 AG
2 6.00 02 50 | 2 6.00 02 100 65
6.00 02 100 65 | | 03 22 5/87 AG
34 03 6.00 02 180 140
34 01 6.00 02 55 30 | 03 2.00 02 130
34 01 2.00 02 130
34 01 4.00 02 130
34 01 6.00 02 130 | 35 01 10.00 02 300 155
35 01 6.00 02 138 80 | 03 22 4/88 AG
34 01 10.00 02 180 30
34 02 10.00 02 180 30
34 02 6.00 02 60 30 | 34 02 3.00 02 123 80
34 02 9.00 02 120 100
34 01 12.00 02 135 99 | 35 01 10.00 02 90 46
35 03 6.00 02 120 120
35 02 8.00 02 75 45 | 03 22 5/87 AG
134 01 6.00 02 126 122
134 01
134 01 | 03 22 10/87 AG
34 02 6.00 02 50 20
34 02 6.00 02 50 20
34 02 6.00 02 50 20
34 01 6.00 02 150 100
34 02 6.00 02 150 100
34 02 6.00 02 150 100
34 02 34 02 | 03 22 5/ 87 AG
35 02 6.00 02 50 | 03 22 5/87 AG
35 02 6.00 02 50 | 03 25 5/87 AG 35 02 6.00 02 100 65 35 02 6.00 02 100 65 34 02 6.00 02 100 65 34 02 6.00 02 100 65 34 02 6.00 02 100 65 34 02 6.00 02 100 65 34 02 6.00 02 100 65 | | 90 0.85 | 30 0.85 | 200 0.85 | 213 0.50 | 120 0.50 | 200 0.50 | 126 0.85
RIVER | 17 0.50 | 85 0.50 | 20 0.50
30 0.50 | | |-------------------------|-------------------------|---|--|---------------------------|---|---|--|-----------------------------------|--------------------|------------------------| | 15 | 15 | ٦.
د | 15 | 2 | 2 | 15
CHEE | 15 | 2 | ~ ~ | | | 8.0 | 8.0 | 8.0 | & | 0.8 | 8.0 | 5 0.8
CALOOSAHAT | 8.0 | 8.0 | 8.00 | | | 13 | 13 | | 50 | 20 | 13 | 15
FROM CA | 13 | 09 | 61 | | | GROVE | † | | And the second s | r,
inc. | | GRAVITY FED FI | | | | | | TRUS C | 04 | 01
01
04
04 | 00
00
01
01
01
01 | PMENT,
04 | 03 | 04 | 01
01
04 | 03 | | 01 | | MURRAY CIT
897690 GW | . PHILLIPS
892556 GW | E 895695 GW 894468 GW 894468 GW 894560 GW 895352 GW 895299 GW 895895 GW 895895 GW 895895 GW 894855 | 880035 GW
878703 GW
877692 GW
877458 GW
875238 GW
875238 GW
877847 GW
877080 GW | CRES DEVELOP
812765 GW | воисн
764760 сw
764700 сw
762200 сw | OTHERS
865724 GW
859569 GW
SW | VES
861642 GW
861431 GW
861073 GW
860829 GW | CONLEY
763822 GW
763801 GW | BEARDSLEE | 767706 GW | | AUSTIN -
338338 | JOSEPH F
338615 | 1 DAVID LE
364555
365786
366401
365323
362770
363320
3634124 | 1. H. BA
355671
347021
305910
305987
30506
304774
304928
304778 | LEHICH A
294597 | TONY ROS
304050
302800
303100 | YODER BR
293842
264470 | VOSS GROVES
303564 86
303659 86
303483 86
303512 86 | CHARLES
298669
298902 | RALPH G. | 299087
299530 | | 1 650 | 300 | 00000000000000000000000000000000000000 | 10 | 1000 | 3
500
500
500 | 75 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2
2200
120 | 8 | 1500
1500 | | GW
02 | GW
02 | вотн | 85
5 | GW | M.
O | вотн | ₩5 | СW | СW | | | 12-87 AG
100 | 0 AG
100 | 4/88 AG
15
15
15
15
100 | 7/77 AG | 4/82 AG | 0 AG | 12/87 AG | 11/78 AG | 12-78 AG
60
20 | 2/79 AG | 20 | | 22 1
185 | 22
150 | 22 50 50 200 180 180 180 180 180 180 180 180 180 1 | 36
20
20
20
20
20
20
20
20
20
20
20
20
20 | 36 | 36 | 36
120
120 | 3.6
4.0
9.0
9.0 | 36
70
28 | 36 | 2.2 | | 10.00 | 6.00 02 | 8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
8.00 02
10.00 02 | 4.00 02
4.00 02
4.00 02
4.00 02
0.75 02
2.00 02
2.00 02
2.00 02 | 31.4 02
6.00 02 | 64.8 02
6.00 02
6.00 02
8.00 02 | 6.00 02 | 2.00 02
2.00 02
2.00 02
2.00 02 | 10.00 02 | | 8.00 02 | | 03
135 01 | 03
135 02 | 134 02
134 02
134 02
134 02
134 02
134 02
134 02
134 02 | 03
134 01
153 01
153 01
153 01
153 01
153 01
153 01
153 01 | 03
170 01 | 03
189 01
189 01
189 01 | 03
152 01
152 01
152 01 | 153 01
153 01
153 01
153 01 | 03
189 01
189 01 | 03 | 189 01
189 01 | | 41.40
2200134-38 | 13.80
2200138-39 | 2200144-70
2200144-71
2200144-71
2200144-73
2200144-74
2200144-75
2200144-76
2200144-76
2200144-5W5 | , 69.00
3600016-61
3600016-62
3600016-31
3600016-32
3600016-33
3600016-33
3600016-35
3600016-35
3600016-36 | 81.00
3600049-2 | 360007-
360007-
360007-
360007- | 368.27
360005-66
3600005-37
3600005-SW | 3600075-27
3600075-27
3600075-28
3600075-29
3600075-30 | 5 18.47
3600076-6
3600076-7 | 13.03 | 3600090-1
3600090-2 | | 2200134 | 2200138 | 2200144 | 9100098 | 3600049 | 3600077 | 3600005 | 3600075 | 3600076 | 3600090 | | ř. | 0.8 2 60 0,85 | 0.8 2 32 0.85
0.8 2 18 0.85 | | 0.8 2 40 0.50 | 0.8 2 325 0.50 | 0.8 2 1265 0.50 | |--|--------------------------------|---|----------------------------------|--|--| | | 13 | | 20 | 20 | 12 | | INC.
03
04
04
03 | INC. | 03
03
04 | 04 | 01
01 | NCE
01
01
01
03
01
01
01
01
01
01
01
01
01
01
01
01
01 | | AR GROVES,
759927 GW
759912 GW
759971 CW
760008 GW | AR GROVES, | 770165 GW
770782 GW
771448 GW
772111 GW | FLINT
817427 GW
817949 GW | FLINT
795847 GW
797393 GW
797350 GW | E MAINTENA
769211 GW
769211 GW
769222 GW
769222 GW
769223 GW
769132 GW
769132 GW
769132 GW
769132 GW
76764 GW | | PENINSULAR
296000 7
296321 7
295665 7
295083 7
295480 7 | PENINSULAR | 286555
286580
286615
286692
286994 | CHARLES . 298478 298684 | CHARLES
304053
302220
300906 | SBN GROWI
315572
315119
314191
314191
313595
313607
313607
313395
312742
312742
312742
312742
312742
312742
312742
312742
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744
312744 | | 5
1200
1200
500
1200
1200 | 'n | 1200
1200
1200
1200
500 | 500
1 | 500
500
500
500 | | | 00000
0000
0000
0000
0000
0000
0000
0 | . GW | 62222 | GW | M. | 3 5 . | | 5 2/86 AG
40
40
40
160
25 | 2/79 AG | 40
40
40
116 | 12/87 AG | 3.79 AG | 7/82
26
26
33
32
32
32
33
34
37
37
39 | | 36
130
130
190
130 | 36 | 100
100
100
200 | 36
80
200 | 36 | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 10.00 02
10.00 02
10.00 02
8.00 02
13.00 02 | | 13.00 02
13.00 02
13.00 02
13.00 02
8.00 02 | 6.00 02 | 6.00 02
6.00 02 | 270.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00 | | 03
189 01
189 01
189 01
188 01 | 03 | 188 01
188 01
188 01
188 01
188 01 | 03
171 01
171 01 | 171 01
171 01
171 01 | 1889 011 188 | | 13.03
3600094-8
3600094-9
3600094-10
3600094-48 | 10.85 | 3600095-50
3600095-51
3600095-52
3600095-53 | 8.70
3600113-75
3600113-76 | 141.08
3600119-72
3600119-73
3600119-74 |
565.00
3600129-128
3600129-129
3600129-131
3600129-131
3600129-133
3600129-133
3600129-135
3600129-136
3600129-140
3600129-141
3600129-141
3600129-141
3600129-148
3600129-148
3600129-148
3600129-148
3600129-148
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150
3600129-150 | | 3600094 | 3600095
3600095 | | 3600113 | 3600119 | 6Z 191
191 | 772582 772570 774737 774133 772577 771855 772077 308552 308070 308030 308058 306098 306098 30528 306858 309858 309419 309419 308398 308093 307917 307879 309727 306987 306503 3600129-160 189 01 12.00 02 60 39 3600129-161 189 01 12.00 02 60 39 3600129-162 189 01 9.00 02 450 227 3600129-164 189 01 8.00 02 450 227 3600129-164 189 01 12.00 02 47 35 3600129-164 189 01 12.00 02 47 35 3600129-164 189 01 12.00 02 47 35 3600129-167 189 01 12.00 02 51 36 3600129-170 189 01 12.00 02 50 33 3600129-171 189 01 12.00 02 57 39 3600129-172 189 01 12.00 02 57 39 3600129-174 189 01 12.00 02 57 39 3600129-175 189 01 12.00 02 41 34 3600129-175 189 01 12.00 02 41 34 3600129-176 189 01 12.00 02 41 ``` AN.ALL. = Annual Permitted Allocation ALL.UNT. = Annual Allocation Units 01 = MGD 02 = MGM 03 = MGY 04 = AC-FT MAXMO = Maximum Monthly Permitted Allocation 01 = .MGD 02 = MGM 03 = AC-FT CO = County Code (from permit number) DATE ISS = Date Permit Issued (mo/yr) USE TYPE = AG, IND, GLF, PWS, COM, REC SRC = Source (SW,GW, BOTH) NO.WLS. = Number of ACTIVE permitted wells SWPMPS = Number of Surface Water Pumps SAID = Service Area ID LAD = Low Average Demand (Million Gallons per Month) HAD = High Average Demands (Million Gallons per Month) LMMD = Low Max. Month Demand (Million Gallons per Month) HMMD = High Max. Month Demand (Million Gallons per Month) AQ = Aquifer 01 = Water Table 02 = Surficial (semi-confined) 03 = Lower Tamiami 04 = sandstone 05 = mid-Hawthorn 06 = lower Hawthorn 07 = Suwannee 08 = Floridan 09 = Biscayne PPOP = Permanent Population (1000's) SPOP = Seasonal Population (1000's) STS = Status 01 = Existing 02 = Proposed 03 = Standby/Backup 04 = To Be Plugged DPRH CODE = Datum for Elevations 01 = NGVD 02 = Land Surface PMPINT = Depth to Pump Intake (Wells Only) PUMP TYPE 01 = Centrifical (suction) 02 = Lift (turbine, jet, submersible) 03 = Unknown PUMP CAP = Capacity in GPM (GW & SW Facilities) 01 = Unknown MTR? = Is use Metered by Volume or Power Consumption and Reported to the District? Y = Yes N = No XPLNR = East Planar Coordinate YPLNR = North Planar Coordinate ``` ORY COUNTY MODEL AREA WATER USE | | - Existing Water Use - Permit Information and Table 3 - Forcasted Demands for Each Permit) | | | | |----------|--|------------------|---------------------|----------------------------------| | • | and Table 3 - Force | | | OWNER | | | tion | | MS | PMPS | | | ermit Informa | | DATE USE SRC.NO. SW | MY MO HTS CO ISS. TYPE MIS. PMPS | | | er Use - I | | DATE | 1881 | | | ng Wat |

 | MO | r
L | | | xisti | | ALL. MAX MO. | Z | | | (Table 1 - E | | ALL. | TNI | | | HEADINGS | | AN. | 114 | | ik
II | E. | | 1111 | | | h Permit) | AND DREDGE MINING)
LOSED SYSTEM SAND MIMING OPERATION | | | | |------------------|----------------------------|---------------|--------------------|------------|------------------------|--------|--------|-----------|---------|----------|--------|--------|--------|--------|--------------------|----------|--|-------------|--------------|------------------|-------------------------|-------------|--|-------------------------------------|---|--| | Demands for Each | | | COMMENTS | IG | | | | | | | | | | | | | GROWERS
03
03
03 | | MONITOR WELL | | HOME PARK | | (DEWATERING
THIS IS A C | - | | OAKS) | | Forcasted | 11
14
13
13
14 | ermit) | C AO | SEW | 0 4 | | 0.0 | | | 500 | | 1 04 | 0 | 0 | 0 0 | • | | Z | 03 | | OBILE | | TRIES | 1 01 | | 3 04
3 04
3 04 | | 3 - | | Each Permit | PLNR | WATER | 748424 GW
748456 GW | | | 748826 GW | | 75775 GW | | | | | 763200 GW | | OUNTY SUGAR
897572 GW
897621 GW
897563 GW | MOORE HAVEN | 909242 GW | | WHISPERING PINES MOBILE | | ROCK INDUST
934000 GW | 934000 GW
934000 SW
934000 SW | | CKEEK (LABELLE
892400 GW 04
892700 GW 04 | | and Table | S OWNER | on for | XPLNR | IMMOKALEE | 358594 | 357288 | 358508 | 358417 | 95858 | 354382 | 366366 | 369093 | 366600 | 366600 | 349600 | | GLADES CC
473682
474081
476492
473224 | CITY OF 1 | | 466900 | WHISPERI | 348713 | FLORIDA 1 | 402000
402000
402000 | | WHISPER 0
357250
357250 | | ation
===== | SW
PMP: | orm
::: | MTR |

 | >- >-
 | · >- | | × × | | | · >- | | | | >- >-
 | | 4 | 4 | ٥ ۲ | 00 | ~ | o 0 | 2 N | 222 | r | K K
O C R | | Information
 | NO. | ies Inf | ГРО | 1 | 110 | 25(| 356 | 2) (L | 350 | υ
υ | n
N | 35 | 25 | 25 | 25. | 1 | | | 40 | 200 | u | טינ | 500 | 500
1000
1800 | | የ | | ll. | SRC.NO | cilit. | PUM | 11 | | | | | 0 0 2 | | | | | | | | W C | M.S. | | 1 | S GW | | 0 GW | 02 | | 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Per | USE | F B | E WI | | | | | | 234 235 | | | - | | _ | 140 141
140 141 | 4 | 6 IND
40
40
40 | 872 PWS | | 30 | 72 PW | 0,0 | 62 IND
20 | 20 | • | 80 70
80 70
80 70 | | Use | DA
IS | Use | ll | 10 | | | | | | | | | | | | | 4/7 | 1/ | • | | 1/8 | | 8/8 | | , | 8/8 | | 63 II | 3. CO | Water |
 L | | 275 | 9 | | | 310 | | | | | | 200 | | 22.
75
75
75 | 22 | | 200 | • | 100 | 22 | 50 | (| 22
130
130 | | Existing Water | MAX MO. U | Existing | WELL DP | 3,30 | 8.6 | 200 | 00. | 00. | 8.00 02 | 00. | 80. | 00. | 00. | 00. | 00. | | 12.00 02
12.00 02
12.00 02 | .33 01 | 10.00 | 10.00 02 | Ġ | 4.00 02 | 1.44 01 | 12.00 02 | | .05
6.00 07
6.00 02 | | | ALL.
UNT. | ⇔ | ⊪
⊪ E | 03 | 10 | 03 | 01 | 5 1 | 01 | 01 | 0.1 | 0.1 | 02 | 0.2 | 2 0 | V | 03
01
01 | 0.0 | 01 | 02 | 0 | 02 | 01 | 02
01
01 | | 033 | | HEADINGS (Table | AN.
ALL. | EADINGS (Tabl | FACILITY
NUMBER | 841.00 | | | | | | | | | | | | | 313.00
2200026-1
2200026-2
2200026-3
2200026-4 | 120.45 | 2200045-5 | 7
7
9
9 | | 2200073-29B | :-1 | | | 15.67 | | | 1
1
1 | + |

 E |
 | | | | | | | 1 | 94 | 4 | | | | 3026 | 0045 | | | 200073 | | 20011 | | | | | 356900 892700 CW 04 | CHARLESTON PARK HOUSING DEVELOPMENT 309758 856015 GW 01 309580 856225 GW 01 309757 854435 GW 01 309583 856630 GW 01 309760 856810 GW 01 | 1 J. L. KELLEY ROCK COMPANY (DEWATERING)
SW PERMIT IS TO DEWATER A LIMEROCK QUARRY - PERMIT EXPIRES 11/92 | USSC
520849 879778 GW 03
520849 879778 GW 03 | GENERAL DEVELOPMENT UTILITIES, INC. (PORT LABELLE) 377500 884100 GW 04 377750 884400 GW 04 | | | HENDRY CORRECTIONAL INSTITUTE | M. J. BURGESS, JR. (GRADMA'S GROVE)
344400 873700 GW 01
344500 873700 GW 01 | USSC - DEWATERING HORROW PIT
516920 762850 SW 01 | BERRY CITRUS PRODUCTS 337763 866791 GW 01 337819 866818 GW 01 337894 866854 GW 01 337966 866901 GW 01 338041 866984 GW 01 337719 866574 GW 04 | SHOULTS MINING (DEWATERING) SW | MORRIS E. RIDGEDILL (DEWATERING) SW | |---------------------|--|--|---|--|--|---|------------------------------------|---|---|---|--------------------------------|-------------------------------------| | 50 Y | 10
10
10
10 | 4000 | 2
150
150 | 2
450 Y
500 Y | 290 Y
140
290 Y | | 14 | 400 | 7000 | 2 2 2 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | 1600 | 2000 | | 00 02 130 80 70 02 | 01 36 3/87? PWS GW
00 02 30 10 8 01
00 02 30 10 8 01 | 01 36 11/887IND SW | 26 5/87? IND GW
00 02 80 30 02
00 02 80 30 01 | 01 26 5/88? PWS GW
00 02 300 250 02
00 02 283 225 02 | 01 26 1/89? PWS GW
0 02 26 20 15 02
0 02 26 20 15 02
0 02 26 20 15 02 | 02 24 20 18
02 32 25 20
02 30 25 20 | 01 26 1/84 PWS GW. WELL DETAILS | 01 26 5/84 PWS GW
0 02 35 15 15 01
0 02 35 15 15 01 | 01 26 8/88? IND SW
0 NGVD | 01 26 9/87? IND GW
0 02 30 25 14 01
0 02 120 100 02 | 01 26 2/88? IND SW | 03 26 11/862IND SW | | 02 6.0 | 03 .324
01 2.00
02 4.00
02 4.00
02 4.00
02 4.00 | 13 5.76
2 | 03
01 8.0
03 6.0 | 03 806
01 8.0
01 14.0 | 03 1.40
01 12.00
01 12.00
01 12.00 | - | 03 339
6-00126 FOR | 3 .017
2 4.00
2 4.00 | 10.08 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | 2.304 | 2.88 | | | 9.7 | 3600637 2102.00 0 | 2600021 103.62 0 | 2600096 98.2 0 | 2600105 255.50
2600105-43 0
2600105-44 0
2600105-46 0 | 48 | 2600164 123.81 0
SEE PERMIT 26- | 2600167 6.32
2600167-79 02
2600167-80 02 | 2600252 | 2600216 22.66
2600276-99 01
2600276-100 01
2600276-101 01
2600276-102 01
2600276-103 01
2600276-104 04 | 10 | 02 | THIS PAGE INTENTIONALLY BLANK ## APPENDIX F COMPARATIVE HYDROGRAPHS ``` LAYER: 1 ROW: 39
COLUMN: 43 STATION: HE-3 Water Levels in Feet, Datum NGVD 42 52 12 22 32 62 JAN 86: FEB 86: MAR 86: APR 86: *+ MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: +* DEC 86: +* JAN 87: FEB 87: * MAR 87: +* APR 87 : MAY 87: JUN 87: JUL 87: * AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` Water Levels in Feet, Datum NGVD 8 18 28 38 48 58 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87 AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88 : AUG 88 SEP 88 M OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels . M = observed data missing (if observed agrees with simulated, only a * is printed) LAYER: 1 ROW: 18 COLUMN: 47 STATION: HE-339 Comments: Well located near canal, affected by cell wide averaging. ``` LAYER: 1 ROW: 22 COLUMN: 16 STATION: HE-554 Water Levels in Feet, Datum NGVD 25 35 45 55 65 75 JAN 86: *+ FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: *+ DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88 : APR 88: ** 88 YAM JUN 88: JUL 88: AUG 88 M SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` Water Levels in Feet, Datum NGVD 57 27 37 47 17 + + + + JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 : APR 87: MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: HE-558 LAYER: 1 ROW: 11 COLUMN: 9 STATION: HE-569 LAYER: 1 ROW: 15 COLUMN: 10 ## Water Levels in Feet, Datum NGVD ``` 17 27 37 47 57 67 ...+....+...+ JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87 JUL 87 AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN -88 FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels ``` + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) STATION: HE-851 LAYER: 1 ROW: 16 COLUMN: 15 Water Levels in Feet, Datum NGVD 19 29 39 49 59 69 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: **DEC 86:** JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 : JAN 88: FEB 88: MAR 88: APR 88: MAY 88: JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` 14 24 34 44 54 64 JAN 86: FEB 86: +* MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: +* JAN 87 : FEB 87 : MAR 87: APR 87: +* MAY 87: JUN 87 : JUL 87 : AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 : JAN 88 : FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88 : AUG 88 M SEP 88: OCT 88: NOV 88: DEC 88: ``` * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) STATION: HE-854 LAYER: 1 ROW: 20 COLUMN: 40 # Water Levels in Feet, Datum NGVD ``` 14 24 34 44 54 64 +....+...+...+....+ JAN 86: +* FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 M MAY 88 M JUN 88 M JUL 88 M AUG 88 M SEP 88 M OCT 88 M M 88 VOM DEC 88 M ``` * = simulated water levels + = observed water levels . M = observed data missing (if observed agrees with simulated, only a * is printed) STATION: HE-856 LAYER: 1 ROW: 25 COLUMN: 34 ### Water Levels in Feet, Datum NGVD ``` 19 29 39 49 59 69 +....+ JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87 : JUL 87 AUG 87: SEP 87 : OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88 M OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels ``` M = observed data missing (if observed agrees with simulated, only a * is printed) LAYER: 1 ROW: 8 COLUMN: 28 STATION: HE-857 Water Levels in Feet, Datum NGVD 59 9 19 29 39 49 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 : APR 87 : MAY 87 : * JUN 87 : JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88 : AUG 88: SEP 88 M * OCT 88 : NOV 88 : DEC 88 : * * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) Comments: Well located near canal, affected by cell wide averaging. STATION: HE-858 LAYER: 1 Water Levels in Feet, Datum NGVD 52 62 12 22 42 32 JAN 86: FEB 86: MAR 86: APR 86: MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86: NOV 86: DEC 86: JAN 87: FEB 87 MAR 87 APR 87 MAY 87 JUN 87 JUL 87 AUG 87 SEP 87 : OCT 87 : NOV 87 DEC 87 38- NAU FEB 88: MAR 88: APR 88 : 88 YAM JUN 88 JUL 88 AUG 88 SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ROW: 11 COLUMN: 34 Comments: Well located near canal, affected by cell wide averaging. ``` STATION: HE-860 LAYER: 1 ROW: 29 COLUMN: 37 Water Levels in Feet, Datum NGVD 16 26 36 46 56 66 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 : FEB 87: MAR 87 : APR 87: MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : M 88 YAM JUN 88 M JUL 88 M AUG 88 M SEP 88 M OCT 88 M M 88 VON DEC 88 M * = simulated water levels ``` + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) LAYER: 1 ROW: 40 COLUMN: 48 STATION: HE-862 Water Levels in Feet, Datum NGVD 16 36 46 56 6 26 JAN 86: FEB 86: MAR 86: APR 86 MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87 JUN 87 JUL 87: AUG 87: SEP 87 OCT 87 : NOV 87 DEC 87 JAN 88 FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88 AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: * =simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) Comments: Well located near canal, affected by cell wide averaging. STATION: HE-884 LAYER: 1 ROW: 40 COLUMN: 37 Water Levels in Feet, Datum NGVD 11 21 31 41 51 61 JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 : APR 87 MAY 87: JUN 87: JUL 87 AUG 87: SEP 87 : OCT 87 : NOV 87: DEC 87 : JAN 88: FEB 88 MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88 M OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels Comments: Well located near canal, affected by nodal averaging. (if observed agrees with simulated, only a * is printed) M = observed data missing LAYER: 1 ROW: 20 COLUMN: 24 STATION: HE-1027 Water Levels in Feet, Datum NGVD 72 22 52 62 32 42 +....+...+...+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 M NOV 87: DEC 87 : JAN 88 M FEB 88: MAR 88 M APR 88 M MAY 88 M JUN 88 M JUL 88 M AUG 88 M **SEP 88 M** OCT 88 M M 88 VOM DEC 88 M * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: HE-1036 LAYER: 1 ROW: 23 COLUMN: 37 Water Levels in Feet, Datum NGVD 69 19 29 39 49 59 +...,...+....+....+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87: DEC 87 : JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : * + JUN 88 : JUL 88 : AUG 88: SEP 88: OCT 88 : NOV 88 : DEC 88 : * = simulated water levels + = observed water levels M = observed data missing ``` (if observed agrees with simulated, only a * is plotted) STATION: HE-1043 LAYER: 1 ROW: 35 COLUMN: 30 Water Levels in Feet, Datum NGVD 55 15 45 65 25 35 ..+....+...+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87: NOV 87: DEC 87 : JAN 88 : FEB 88: MAR 88: APR 88 : ** 88 YAM JUN 88: JUL 88 M AUG 88 M SEP 88: OCT 88: NOV 88: DEC 88 : * = simulated water levels + = observed water levels M = observed data missing Comments: none (if observed agrees with simulated, only a * is printed) LAYER: 1 ROW: 40 COLUMN: 35 STATION: HE-1062 Water Levels in Feet, Datum NGVD 10 20 30 40 50 60+...+...+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M **DEC 86 M** JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87: DEC 87: JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88 : +*
DEC 88: # Comments: none * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: HE-1069 LAYER: 1 ROW: 14 COLUMN: 39 Water Levels in Feet, Datum NGVD 13 23 33 43 53 63 ++....+...+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87: DEC 87: JAN 88 FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88 M OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: HE-1077 LAYER: 1 ROW: 16 COLUMN: 20 Water Levels in Feet, Datum NGVD 60 70 20 30 40 50 JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 M NOV 87 M DEC 87 M JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88 : AUG 88: SEP 88 : OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels . M = observed data missing (if observes agrees with simulated, only a * is printed) ``` STATION: L-1137 LAYER: 1 ROW: 15 COLUMN: 5 Water Levels in Feet, Datum NGVD 63 13 23 33 43 53 JAN 86: FEB 86: + * MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87 JUL 87 AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88 : FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88 : AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` STATION: L-1138 LAYER: 1 ROW: 29 COLUMN: 6 Water Levels in Feet, Datum NGVD 48 58 68 18 28 38 +....+...+...+ JAN 86: FEB 86: MAR 86: * APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: +* FEB 87: + * MAR 87: + * * APR 87: MAY 87: +* JUN 87: + * JUL 87: AUG 87 : SEP 87: OCT 87 : NOV 87: DEC 87 M JAN 88: FEB 88: MAR 88: APR 88: MAY 88 : JUN 88 : JUL 88 : AUG 88: SEP 88: OCT 88 : NOV 88 : DEC 88 : * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` LAYER: 1 ROW: 22 COLUMN: 4 STATION: L-1964 Water Levels in Feet, Datum NGVD 20 30 40 50 60 70 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87: NOV 87 DEC 87 : JAN 88: FEB 88: MAR 88 APR 88 MAY 88 : JUN 88 JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` STATION: L-1978 LAYER: 1 ROW: 11 COLUMN: 3 Water Levels in Feet, Datum NGVD 8 18 28 38 48 58 JAN 86: FEB 86: +* * MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 : +* FEB 87: MAR 87 : +* APR 87 : MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88 M SEP 88: OCT 88: : 88 VOM DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: L-1992 LAYER: 1 ROW: 21 COLUMN: 6 Water Levels in Feet, Datum NGVD 48 58 68 18 28 38 JAN 86: FEB 86: MAR 86: APR 86 MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87 : MAR 87: APR 87 : MAY 87: JUN 87 JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 JAN 88 : FEB 88: MAR 88: APR 88 MAY 88 : JUN 88: JUL 88 AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: L-2202 LAYER: 1 ROW: 10 COLUMN: 6 Water Levels in Feet, Datum NGVD 7 17 27 37 47 57 JAN 86: FEB 86: *+ MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87 AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 : JAN 88: FEB 88 MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88 : NOV 88 M DEC 88 : * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` * = simulated water levels + = observed water levels M = observed data missing (if observes agrees with simulated, only a * is printed) ``` Water Levels in Feet, Datum NGVD 50 70 20 30 40 60 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87 : OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88: MAY 88: JUN 88 : JUL 88: AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: C-363 LAYER: 1 ROW: 31 COLUMN: 16 ``` ****** ``` STATION: C-462 LAYER: 1 ROW: 29 COLUMN: 15 Water Levels in Feet, Datum NGVD 22 52 62 72 32 42 + + + JAN 86: FEB 86: MAR 86: APR 86: MAY 86 JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86 DEC 86: JAN 87: FEB 87 : MAR 87 APR 87 : MAY 87: JUN 87 JUL 87 AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88 FEB 88: MAR 88: **APR 88** 88 YAM JUN 88 JUL 88: AUG 88 SEP 88 OCT 88 NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) LAYER: 1 ROW: 27 COLUMN: 13 STATION: C-532 Water Levels in Feet, Datum NGVD 26 36 46 56 66 76 JAN 86: FEB 86 : MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 APR 87: MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88 FEB 88 MAR 88 : APR 88 :* MAY 88 :* JUN 88 :* JUL 88 M * AUG 88 M SEP 88 M OCT 88 M NOV 88 M * DEC 88 M* ``` * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` COLUMN: 20 STATION: C-966 LAYER: 1 ROW: 36 Water Levels in Feet, Datum NGVD 43 53 13 23 33 .+....+...+ JAN 86: FEB 86: * MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87 +* JUN 87 +* JUL 87: AUG 87 : +* SEP 87: +* OCT 87 : NOV 87: DEC 87 JAN 88: FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88 AUG 88: SEP 88: OCT 88: NOV 88: ``` * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is plotted) ``` ## Comments: none DEC 88 : Water Levels in Feet, Datum NGVD 6 16 26 36 46 56 JAN 86: +* FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 : FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 : JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88 : AUG 88 M SEP 88: OCT 88 : NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) LAYER: 1 ROW: 47 COLUMN: 20 STATION: C-986 <u>Comments:</u> Well located in corner of model with specified head cells on two sides. ``` STATION: C-1071 LAYER: 1 ROW: 39 COLUMN: 24 Water Levels in Feet, Datum NGVD 4 14 24 34 44 54 JAN 86: FEB 86: MAR 86: APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86: NOV 86 M DEC 86 M JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87: OCT 87 : NOV 87 DEC 87: JAN 88 : FEB 88 MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels ``` (if observed agrees with simulated, only a * is printed) + = observed water levels M = observed data missing Comments: Well located near canal, affected by cell wide averaging. ``` STATION: C-1075 LAYER: 1 ROW: 28 COLUMN: 19 Water Levels in Feet, Datum NGVD 22 32 42 52 62 72 JAN 86: FEB 86: MAR 86: APR 86: MAY 86 M * JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86: NOV 86: DEC 86: JAN 87 : FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88 M SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` COLUMN: 37 STATION: HE-629 LAYER: 2 ROW: 13 Water Levels in Feet, Datum NGVD 13 23 33 43 53 63 JAN 86: + * FEB 86: + * MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: +* FEB 87: MAR 87 : APR 87 : MAY 87: JUN 87: JUL 87: AUG 87: +* SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: +* FEB 88: +* MAR 88 : +* APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88 : * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ``` 51 61 71 21 31 41+ JAN 86: FEB 86: MAR 86: APR 86: MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86: NOV 86: DEC 86: JAN 87: FEB 87 : MAR 87: APR 87 : MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: ``` * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: HE-855 LAYER: 2 ROW: 25 COLUMN: 34 Water Levels in Feet, Datum NGVD 49 69 19 29 39 59 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 : APR 87: MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87 : OCT 87 : NOV 87: DEC 87 : JAN 88 : FEB
88: MAR 88: APR 88: MAY 88 : JUN 88 : JUL 88 : AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels ``` M = observed data missing (if observed agrees with simulated, only a * is printed) ## Water Levels in Feet, Datum NGVD ``` 24 44 54 64 14 34 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 APR 87: MAY 87 JUN 87 JUL 87: AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88 M OCT 88: NOV 88: DEC 88: * = simulated water levels ``` + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) Water Levels in Feet, Datum NGVD 7 17 27 37 47 57 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 : FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87 AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 : JAN 88 : FEB 88: MAR 88 : APR 88 : MAY 88 : JUN 88 : JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels LAYER: 2 ROW: 40 COLUMN: 48 STATION: HE-861 + = observed water levels M = observed data missing Comments: Observed water levels exhibit high variation coefficient. (if observed agree with simulated, only a * is printed) ``` LAYER: 2 ROW: 36 COLUMN: 41 STATION: HE-868 Water Levels in Feet, Datum NGVD 62 42 52 12 22 32 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87 JUN 87 JUL 87: AUG 87 SEP 87 OCT 87: NOV 87: DEC 87 JAN 88 : FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88 AUG 88: SEP 88 M OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` STATION: HE-1028 LAYER: 2 ROW: 20 COLUMN: 24 Water Levels in Feet, Datum NGVD 22 32 42 52 62 72 JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87: NOV 87: DEC 87: JAN 88 M FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88 : AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` LAYER: 2 ROW: 20 COLUMN: 24 STATION: HE-1029 Water Levels in Feet, Datum NGVD 22 32 42 52 62 72+....+...+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87: DEC 87: JAN 88 M FEB 88: MAR 88 : APR 88: MAY 88 : JUN 88: JUL 88 : AUG 88: SEP 88 : OCT 88 : NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` Water Levels in Feet, Datum NGVD 28 58 68 18 38 48 JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87: NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88 : JUL 88 : AUG 88: SEP 88 M OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` STATION: HE-1037 LAYER: 2 ROW: 23 COLUMN: 31 STATION: HE-1063 LAYER: 2 ROW: 40 COLUMN: 35 Water Levels in Feet, Datum NGVD 31 11 21 41 51 61 +....+...+....+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87: +* DEC 87 : JAN 88 : FEB 88: +* MAR 88 : +* APR 88 : MAY 88 : JUN 88 : +* JUL 88 : AUG 88: + * SEP 88 : +* OCT 88: +* NOV 88 : +* DEC 88 : * * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed 1 ``` STATION: HE-1068 LAYER: 2 ROW: 14 COLUMN: 39 Water Levels in Feet, Datum NGVD 20 40 50 10 30 60 JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88 M OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` Water Levels in Feet, Datum NGVD 7 17 27 37 47 57 JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M **JAN 87 M** FEB 87 M MAR 87 M APR 87 M MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87: DEC 87 : + JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88: JUN 88: JUL 88 : + AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: LAYER: 2 ROW: 23 COLUMN: 46 STATION: HE-1075 ``` * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` <u>Comments:</u> Well located in Everglades Agricultural Area, water levels artificially maintained. ``` STATION: C-1074 LAYER: 2 ROW: 31 COLUMN: 25 Water Levels in Feet, Datum NGVD 15 25 35 45 55 JAN 86: FEB 86: MAR 86: APR 86 M MAY 86 M JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87: FEB 87: MAR 87 APR 87 MAY 87 JUN 87 JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 JAN 88 : FEB 88: MAR 88 : APR 88 : MAY 88 JUN 88 JUL 88 AUG 88: SEP 88: OCT 88 : NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agrees with simulated, only a * is printed) ``` ``` STATION: C-1076 LAYER: 2 ROW: 28 COLUMN: 19 Water Levels in Feet, Datum NGVD 41 51 61 21 31 71 +....+...+...+ JAN 86: FEB 86: MAR 86: APR 86: MAY 86 M * JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86 M NOV 86 M DEC 86 M JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88: FEB 88: MAR 88 M APR 88 M M 88 YAM JUN 88 M JUL 88 M AUG 88 M SEP 88 M OCT 88 M M 88 VON DEC 88 M * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ## Water Levels in Feet, Datum NGVD STATION: C-687 ``` 47 57 27 37 17 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87 : MAR 87: APR 87 : MAY 87 : JUN 87: JUL 87 : AUG 87: SEP 87 : OCT 87 : NOV 87 DEC 87 JAN 88: FEB 88: MAR 88 : APR 88: MAY 88 : JUN 88: JUL 88 AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: ``` ``` * = simulated water levels ``` + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` STATION: L-2192 LAYER: 3 ROW: 29 COLUMN: 2 Water Levels in Feet, Datum NGVD 7 17 27 37 47 57 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 : FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 M JAN 88: FEB 88: MAR 88 : APR 88: MAY 88 : JUN 88 : JUL 88 : AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` Comments: Unreliable observed data. STATION: C-531 LAYER: 3 ROW: 27 COLUMN: 13 Water Levels in Feet, Datum NGVD 58 8 18 28 38 48 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87 : JUN 87: JUL 87 : AUG 87 M SEP 87 M OCT 87 : NOV 87 M DEC 87 M JAN 88 M FEB 88 M MAR 88 M APR 88 : MAY 88 M JUN 88 M JUL 88 M AUG 88 M SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) STATION: HE-529 LAYER: 3 ROW: 22 COLUMN: 16 Water Levels in Feet, Datum NGVD 64 34 44 54 14 24 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87 : AUG 87 M SEP 87 M OCT 87 : NOV 87 M DEC 87 M JAN 88 M FEB 88 M MAR 88 M APR 88 : M 88 YAM JUN 88 M JUL 88 M AUG 88 M SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing Comments: none (if observed agree with simulated, only a * is printed) ``` STATION: L-1963 LAYER: 3 ROW: 22 COLUMN: 4 Water Levels in Feet, Datum NGVD 9 19 29 39 49 59 JAN 86: FEB 86: MAR 86: APR 86 MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87 JUL 87: AUG 87: SEP 87 OCT 87 : NOV 87 DEC 87 JAN 88 FEB 88: MAR 88 : APR 88 MAY 88 : JUN 88: JUL 88 AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ``` L-2186 LAYER: 3 ROW: 22 COLUMN: STATION: Water Levels in Feet, Datum NGVD 20 30 40 50 60 10+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86: JUN 86 M JUL 86 M AUG 86 M SEP 86 M OCT 86: NOV 86 M DEC 86 M JAN 87 M FEB 87 M MAR 87 M APR 87 : MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 M NOV 87: DEC 87 M JAN 88 M FEB 88 M MAR 88 M APR 88 : MAY 88 M JUN 88 M JUL 88 M AUG 88 M SEP 88: OCT 88 : NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is plotted) ``` Comments: Unreliable observed data. STATION: L-1965 LAYER: 3 ROW: 21 COLUMN: 6 Comments: none + = observed water levels M = observed data missing (if observed agree with simulated, only a * is plotted) ``` STATION: HE-556 LAYER: 3 ROW: 16 COLUMN: 15 Water Levels in Feet, Datum NGVD 31 51 61 11 21 41 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN
86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87 : AUG 87 M SEP 87 M OCT 87 : NOV 87 M DEC 87 M JAN 88 M FEB 88 M MAR 88 M APR 88 : MAY 88 : JUN 88 M JUL 88 M AUG 88 M SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ``` STATION: L-727 LAYER: 3 ROW: 15 COLUMN: 5 Water Levels in Feet, Datum NGVD 18 8 28 38 48 58 .+....+...+ JAN 86: FEB 86: MAR 86: APR 86 M MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 M FEB 87 M MAR 87 M APR 87 : MAY 87 M JUN 87 M JUL 87 M AUG 87 M SEP 87 M OCT 87 : NOV 87 M DEC 87 M JAN 88 M FEB 88 M MAR 88 M APR 88 : MAY 88 M JUN 88 M JUL 88 M AUG 88 M SEP 88: OCT 88 : NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ``` STATION: HE-559 LAYER: 3 ROW: 15 COLUMN: 10 Water Levels in Feet, Datum NGVD 13 23 33 43 53 63 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` STATION: HE-560 LAYER: 3 ROW: 15 COLUMN: 10 Water Levels in Feet, Datum NGVD 13 23 43 53 63 33 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87 : MAR 87: APR 87 : MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87 : OCT 87 : NOV 87: DEC 87 : JAN 88 : FEB 88: MAR 88 : APR 88: MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88 : * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` STATION: L-2187 LAYER: 3 ROW: 15 COLUMN: Water Levels in Feet, Datum NGVD 8 18 28 38 48 58 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 : APR 87: MAY 87: JUN 87 JUL 87 AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87 : JAN 88 : FEB 88: MAR 88: APR 88 M MAY 88 M JUN 88 M JUL 88 M AUG 88 M SEP 88 M OCT 88 M NOV 88 M DEC 88 M * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ``` LAYER: 3 ROW: 11 COLUMN: 9 STATION: HE-557 Water Levels in Feet, Datum NGVD 21 31 41 11 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87 : AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88: FEB 88: MAR 88 : APR 88: MAY 88: JUN 88: JUL 88: AUG 88: SEP 88 : OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ``` LAYER: 3 ROW: 11 STATION: L-1977 COLUMN: 3 Water Levels in Feet, Datum NGVD 2 . 22 32 42 52 12 JAN 86: FEB 86: MAR 86: APR 86 M MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87 : MAY 87: JUN 87 : JUL 87: AUG 87: SEP 87: OCT 87: NOV 87: DEC 87: JAN 88 : FEB 88: MAR 88: APR 88 : MAY 88: JUN 88 : JUL 88 : AUG 88: SEP 88 : OCT 88: NOV 88 : DEC 88 : * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` ``` STATION: L-2200 LAYER: 3 ROW: 10 COLUMN: Water Levels in Feet, Datum NGVD 9 29 -1 19 39 49 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87 : APR 87: MAY 87: JUN 87 JUL 87 AUG 87: ``` ``` * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88 MAR 88: APR 88 M MAY 88 M JUN 88 M JUL 88 M AUG 88 M SEP 88 M OCT 88 M M 88 VOM DEC 88 M ``` HE-620 LAYER: 3 ROW: 10 COLUMN: 12 Water Levels in Feet, Datum NGVD -1 9 19 29 39 49 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86 JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87 FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87 AUG 87 SEP 87 OCT 87 NOV 87 DEC 87 JAN 88 FEB 88: MAR 88 APR 88 : MAY 88: JUN 88 JUL 88 AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` STATION: STATION: HE-517 LAYER: 3 ROW: 7 COLUMN: 18 ## Water Levels in Feet, Datum NGVD ``` 7 27 37 -3 17 47 JAN 86: FEB 86: MAR 86: APR 86: MAY 86: JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87 : MAR 87 : APR 87 : MAY 87: JUN 87: JUL 87: AUG 87: SEP 87 : OCT 87 : NOV 87: DEC 87 38 MAL FEB 88: MAR 88: APR 88 : MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88 : DEC 88: ``` * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` STATION: HE-516 LAYER: 3 ROW: 8 COLUMN: 19 Water Levels in Feet, Datum NGVD 3 23 13 33 43 53+ JAN 86 M FEB 86 M MAR 86 M APR 86 M MAY 86 M * JUN 86: JUL 86 M AUG 86 M SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87: MAR 87: APR 87: MAY 87: JUN 87: JUL 87: AUG 87: SEP 87: OCT 87 : NOV 87: DEC 87: JAN 88: FEB 88: MAR 88: APR 88: MAY 88 : JUN 88: JUL 88: AUG 88: SEP 88: OCT 88: NOV 88: DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) ``` STATION: GL-517 LAYER: 3 ROW: 7 COLUMN: 19 Water Levels in Feet, Datum NGVD 31 41 51 1 11 21 ..+.....+ JAN 86: FEB 86: MAR 86: APR 86 : MAY 86 : * JUN 86: JUL 86: AUG 86: SEP 86: OCT 86: NOV 86: DEC 86: JAN 87: FEB 87 : MAR 87 : APR 87: MAY 87 : JUN 87: JUL 87: AUG 87 M SEP 87 M OCT 87 : NOV 87 M DEC 87 M JAN 88 M FEB 88 M MAR 88 M APR 88 : MAY 88 M JUN 88 M JUL 88 M AUG 88 M SEP 88: OCT 88: NOV 88 : DEC 88: * = simulated water levels + = observed water levels M = observed data missing (if observed agree with simulated, only a * is printed) Comments: none